Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell ; 104(2): 247-57, 2001 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-11207365

RESUMO

Germline mutations of the human BRCA2 gene confer susceptibility to breast cancer. Although the function of the BRCA2 protein remains to be determined, murine cells homozygous for BRCA2 inactivation display chromosomal aberrations. We have isolated a 2 MDa BRCA2-containing complex and identified a structural DNA binding component, designated as BRCA2-Associated Factor 35 (BRAF35). BRAF35 contains a nonspecific DNA binding HMG domain and a kinesin-like coiled coil domain. Similar to BRCA2, BRAF35 mRNA expression levels in mouse embryos are highest in proliferating tissues with high mitotic index. Strikingly, nuclear staining revealed a close association of BRAF35/BRCA2 complex with condensed chromatin coincident with histone H3 phosphorylation. Importantly, antibody microinjection experiments suggest a role for BRCA2/BRAF35 complex in modulation of cell cycle progression.


Assuntos
Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mitose/fisiologia , Proteínas de Neoplasias/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos/metabolismo , Proteína BRCA2 , Neoplasias da Mama/genética , Fracionamento Celular , Núcleo Celular/química , Cromossomos/química , Cromossomos/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Embrião de Mamíferos/química , Embrião de Mamíferos/metabolismo , Feminino , Células HeLa , Proteínas de Grupo de Alta Mobilidade , Humanos , Hibridização In Situ , Camundongos , Microinjeções , Dados de Sequência Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Conformação de Ácido Nucleico , Neoplasias Ovarianas/genética , Testes de Precipitina , Estrutura Terciária de Proteína , Fatores de Transcrição/química , Fatores de Transcrição/genética
3.
Cell ; 102(2): 257-65, 2000 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-10943845

RESUMO

Germline mutations in the tumor suppressor gene, BRCA1, predispose individuals to breast and ovarian cancers. Using a combination of affinity- and conventional chromatographic techniques, we have isolated a predominant form of a multiprotein BRCA1-containing complex from human cells displaying chromatin-remodeling activity. Mass spectrometric sequencing of components of this complex indicated that BRCA1 is associated with a SWI/SNF-related complex. We show that BRCA1 can directly interact with the BRG1 subunit of the SWI/SNF complex. Moreover, p53-mediated stimulation of transcription by BRCA1 was completely abrogated by either a dominant-negative mutant of BRG1 or the cancer-causing deletion in exon 11 of BRCA1. These findings reveal a direct function for BRCA1 in transcriptional control through modulation of chromatin structure.


Assuntos
Proteína BRCA1/metabolismo , Neoplasias da Mama/metabolismo , Cromatina/metabolismo , Proteína BRCA1/isolamento & purificação , Cromatografia de Afinidade/métodos , Proteínas Cromossômicas não Histona , DNA Helicases , Proteínas de Ligação a DNA/metabolismo , Feminino , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Proteína SMARCB1 , Fatores de Transcrição/metabolismo , Ativação Transcricional
4.
Proc Natl Acad Sci U S A ; 97(3): 1038-43, 2000 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-10655480

RESUMO

Chromatin remodeling complexes have been implicated in the disruption or reformation of nucleosomal arrays resulting in modulation of transcription, DNA replication, and DNA repair. Here we report the isolation of WCRF, a new chromatin-remodeling complex from HeLa cells. WCRF is composed of two subunits, WCRF135, the human homolog of Drosophila ISWI, and WCRF180, a protein related to the Williams syndrome transcription factor. WCRF180 is a member of a family of proteins sharing a putative heterochromatin localization domain, a PHD finger, and a bromodomain, prevalent in factors involved in regulation of chromatin structure.


Assuntos
Adenosina Trifosfatases/isolamento & purificação , Cromatina/metabolismo , Proteínas de Drosophila , Proteínas Nucleares , Proteínas de Ligação a RNA , Fatores de Transcrição/isolamento & purificação , Síndrome de Williams/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/fisiologia , Sequência de Aminoácidos , Animais , Cromatina/ultraestrutura , Proteínas Cromossômicas não Histona , DNA Helicases , Proteínas de Ligação a DNA/metabolismo , Desoxirribonuclease I/metabolismo , Drosophila melanogaster/genética , Proteínas Fúngicas/fisiologia , Células HeLa , Humanos , Substâncias Macromoleculares , Dados de Sequência Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/isolamento & purificação , Proteínas de Neoplasias/fisiologia , Nucleossomos/metabolismo , Estrutura Terciária de Proteína , Ribonucleoproteína Nuclear Pequena U1/fisiologia , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
5.
Protein Expr Purif ; 17(3): 435-42, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10600463

RESUMO

The thermostable class I HMG-CoA reductase of Sulfolobus solfataricus offers potential for industrial applications and for the initiation of crystallization trials of a biosynthetic HMG-CoA reductase. However, of the 15 arginine codons of the hmgA gene that encodes S. solfataricus HMG-CoA reductase, 14 (93%) are AGA or AGG, the arginine codons used least frequently by Escherichia coli. The presence of these rare codons in tandem or in the first 20 codons of a gene can complicate expression of that gene in E. coli. Problems include premature chain termination and misincorporation of lysine for arginine. We therefore sought to improve the expression and subsequent yield of S. solfataricus HMG-CoA reductase by expanding the pool size of tRNA(AGA,AGG), the tRNA that recognizes these two rare codons. Coexpression of the S. solfataricus hmgA gene with the argU gene that encodes tRNA(AGA,AGG) resulted in an over 10-fold increase in enzyme yield. This has provided significantly greater quantities of purified enzyme for potential industrial applications and for crystallographic characterization of a stable class I HMG-CoA reductase. It has, in addition, facilitated determination of kinetic parameters and of pH optima for all four catalyzed reactions, for determination of the K(i) for inhibition by the statin drug mevinolin, and for comparison of the properties of the HMG-CoA reductase of this thermophilic archaeon to those of other class I HMG-CoA reductases.


Assuntos
Hidroximetilglutaril-CoA Redutases/biossíntese , Sulfolobus/enzimologia , Acil Coenzima A/metabolismo , Acilação , Cromatografia em Agarose , Eletroforese em Gel de Poliacrilamida , Escherichia coli/enzimologia , Concentração de Íons de Hidrogênio , Hidroximetilglutaril-CoA Redutases/química , Hidroximetilglutaril-CoA Redutases/isolamento & purificação , Cinética , Lovastatina/farmacologia , Ácido Mevalônico/metabolismo , RNA de Transferência de Arginina/genética , RNA de Transferência de Arginina/metabolismo
6.
Biochemistry ; 38(28): 8879-83, 1999 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-10413460

RESUMO

The biodegradative 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase of Pseudomonas mevalonii catalyzes the NAD(+)-dependent conversion of (S)-HMG-CoA to (R)-mevalonate. Crystallographic analysis of abortive ternary complexes of this enzyme revealed lysine 267 located at a position in the active site, suggesting that it might serve as the general acid/base for catalysis. Site-directed mutagenesis and subsequent chemical derivatization were therefore employed to investigate this active site lysine. Replacement of lysine 267 by alanine, histidine, or arginine resulted in mutant enzymes that lacked detectable activity. Lysine 267 was next replaced by the lysine analogues aminoethylcysteine and carboxyamidomethylcysteine. Using instead of the wild-type enzyme the fully active, cysteine-free mutant enzyme C156A/C296A, lysine 267 was first replaced by cysteine. Cysteine 267 of mutant enzyme C156A/C296A/K267C was then treated with bromoethylamine or iodoacetamide to insert aminoethylcysteine (AEC) or carboxyamidomethylcysteine at position 267. The carboxyamidomethylcysteine derivative was inactive, whereas mutant enzyme C156A/C296A/K267AEC exhibited high catalytic activity. That aminoethylcysteine, but not other basic amino acids, can replace the function of lysine 267 documents both the importance of this residue and the requirement for a precisely positioned positive charge at the active site of the enzyme.


Assuntos
Substituição de Aminoácidos , Cisteína/análogos & derivados , Hidroximetilglutaril-CoA Redutases/química , Lisina/química , Pseudomonas/enzimologia , Alanina/genética , Substituição de Aminoácidos/genética , Sítios de Ligação/genética , Catálise , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Ativação Enzimática , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Iodoacetamida/química , Lisina/genética , Lisina/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Pseudomonas/genética
7.
Proc Natl Acad Sci U S A ; 96(13): 7167-71, 1999 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-10377386

RESUMO

3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase is the rate-limiting enzyme and the first committed step in the biosynthesis of cholesterol in mammals. We have determined the crystal structures of two nonproductive ternary complexes of HMG-CoA reductase, HMG-CoA/NAD+ and mevalonate/NADH, at 2.8 A resolution. In the structure of the Pseudomonas mevalonii apoenzyme, the last 50 residues of the C terminus (the flap domain), including the catalytic residue His381, were not visible. The structures of the ternary complexes reported here reveal a substrate-induced closing of the flap domain that completes the active site and aligns the catalytic histidine proximal to the thioester of HMG-CoA. The structures also present evidence that Lys267 is critically involved in catalysis and provide insights into the catalytic mechanism.


Assuntos
Hidroximetilglutaril-CoA Redutases/química , Conformação Proteica , Sequência de Aminoácidos , Ativação Enzimática , Hidroximetilglutaril-CoA Redutases/metabolismo , Dados de Sequência Molecular , Pseudomonas , Alinhamento de Sequência , Relação Estrutura-Atividade , Especificidade por Substrato
8.
J Biol Chem ; 274(19): 13162-6, 1999 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-10224071

RESUMO

Cyclin-dependent kinase 7 (CDK7) can be isolated as a subunit of a trimeric kinase complex functional in activation of the mitotic promoting factor. In this study, we demonstrate that the trimeric cdk-activating kinase (CAK) acts as a transcriptional repressor of class II promoters and show that repression results from CAK impeding the entry of RNA polymerase II and basal transcription factor IIF into a competent preinitiation complex. This repression is independent of CDK7 kinase activity. We find that the p36/MAT1 subunit of CAK is required for transcriptional repression and the repression is independent of the promoter used. Our results demonstrate a central role for CAK in regulation of messenger RNA synthesis by either inhibition of RNA polymerase II-catalyzed transcription or stimulation of transcription through association with basal transcription repair factor IIH.


Assuntos
Quinases Ciclina-Dependentes , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Repressoras/fisiologia , Fatores de Transcrição TFII , Transcrição Gênica/fisiologia , Biopolímeros , Células HeLa , Humanos , Proteínas Serina-Treonina Quinases/química , RNA Polimerase II/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/química , Fatores de Transcrição/metabolismo , Quinase Ativadora de Quinase Dependente de Ciclina
9.
Mol Genet Metab ; 66(2): 122-7, 1999 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10068515

RESUMO

Both in eukaryotes and in archaebacteria the enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (E.C. 1.1. 1.34) is known to catalyze an early reaction unique to isoprenoid biosynthesis. In humans, the HMG-CoA reductase reaction is rate-limiting for the biosynthesis of cholesterol and therefore constitutes a prime target of drugs that reduce serum cholesterol levels. Recent advances in genome sequencing that permitted comparison of 50 HMG-CoA reductase sequences has revealed two previously unsuspected classes of this enzyme. Based on sequence and phylogenetic considerations, we propose the catalytic domain of the human enzyme and the enzyme from Pseudomonas mevalonii as the canonical sequences for Class I and Class II HMG-CoA reductases, respectively. These sequence comparisons have revealed, in addition, that certain true bacteria, including several human pathogens, probably synthesize isoprenoids by reactions analogous to those of eukaryotes and that there therefore exist two distinct pathways for isoprenoid biogenesis in true bacteria.


Assuntos
Hidroximetilglutaril-CoA Redutases/química , Hidroximetilglutaril-CoA Redutases/genética , Sequência de Aminoácidos , Animais , Arabidopsis/enzimologia , Archaea/enzimologia , Bactérias/enzimologia , Drosophila melanogaster/enzimologia , Evolução Molecular , Fungos/enzimologia , Humanos , Hidroximetilglutaril-CoA Redutases/classificação , Dados de Sequência Molecular , Filogenia , Plantas/enzimologia , Pseudomonas/enzimologia , Saccharomyces cerevisiae/enzimologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
10.
Biochemistry ; 38(48): 15848-52, 1999 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-10625449

RESUMO

Sequence analysis has revealed two classes of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Crystal structures of ternary complexes of the Class II enzyme from Pseudomonas mevalonii revealed lysine 267 critically positioned at the active site. This observation suggested a revised catalytic mechanism in which lysine 267 facilitates hydride transfer from reduced coenzyme by polarizing the carbonyl group of HMG-CoA and subsequently of bound mevaldehyde, an inference supported by mutagenesis of lysine 267 to aminoethylcysteine. For this mechanism to be general, Class I HMG-CoA reductases ought also to possess an active site lysine. Three lysines are conserved among all Class I HMG-CoA reductases. The three conserved lysines of Syrian hamster HMG-CoA reductase were mutated to alanine. All three mutant enzymes had reduced but detectable activity. Of the three conserved lysines, sequence alignments implicate lysine 734 of the hamster enzyme as the most likely cognate of P. mevalonii lysine 267. Low activity of enzyme K734A did not reflect an altered structure. Substrate recognition was essentially normal, and both circular dichroism spectroscopy and analytical ultracentrifugation implied a native structure. Enzyme K734A also formed an active heterodimer when coexpressed with inactive mutant enzyme D766N. We infer that a lysine is indeed essential for catalysis by the Class I HMG-CoA reductases and that the revised mechanism for catalysis is general for all HMG-CoA reductases.


Assuntos
Hidroximetilglutaril-CoA Redutases/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Catálise , Sequência Conservada , Cricetinae , Escherichia coli/enzimologia , Escherichia coli/genética , Regulação Enzimológica da Expressão Gênica , Hidroximetilglutaril-CoA Redutases/genética , Lisina/química , Mesocricetus , Mutagênese Sítio-Dirigida , Conformação Proteica
11.
J Bacteriol ; 179(11): 3632-8, 1997 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9171410

RESUMO

The gene (hmgA) for 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (EC 1.1.1.34) from the thermophilic archaeon Sulfolobus solfataricus P2 was cloned and sequenced. S. solfataricus HMG-CoA reductase exhibited a high degree of sequence identity (47%) to the HMG-CoA reductase of the halophilic archaeon Haloferax volcanii. Phylogenetic analyses of HMG-CoA reductase protein sequences suggested that the two archaeal genes are distant homologs of eukaryotic genes. The only known bacterial HMG-CoA reductase, a strictly biodegradative enzyme from Pseudomonas mevalonii, is highly diverged from archaeal and eukaryotic HMG-CoA reductases. The S. solfataricus hmgA gene encodes a true biosynthetic HMG-CoA reductase. Expression of hmgA in Escherichia coli generated a protein that both converted HMG-CoA to mevalonate and cross-reacted with antibodies raised against rat liver HMG-CoA reductase. S. solfataricus HMG-CoA reductase was purified in 40% yield to a specific activity of 17.5 microU per mg at 50 degrees C by a sequence of steps that included heat treatment, ion-exchange chromatography, hydrophobic interaction chromatography, and affinity chromatography. The final product was homogeneous, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The substrate was (S)- not (R)-HMG-CoA; the reductant was NADPH not NADH. The Km values for HMG-CoA (17 microM) and NADPH (23 microM) were similar in magnitude to those of other biosynthetic HMG-CoA reductases. Unlike other HMG-CoA reductases, the enzyme was stable at 90 degrees C and was optimally active at pH 5.5 and 85 degrees C.


Assuntos
Acil Coenzima A/genética , Escherichia coli/genética , Genes Bacterianos , Sulfolobus/genética , Sequência de Aminoácidos , Animais , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Filogenia , Ratos , Alinhamento de Sequência , Análise de Sequência de DNA , Sulfolobus/enzimologia
12.
Biochemistry ; 34(11): 3823-31, 1995 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-7893679

RESUMO

We characterized mutants in two novel genes of Bacillus subtilis, cheC and cheD. Mutants in CheC had a high smooth swimming bias and exhibited poor adaptation to positive stimuli. Analysis of tethered cells revealed two distinct subpopulations which differ in their prestimulus bias and extent of adaptation. The receptors, the methyl-accepting chemotaxis proteins (MCPs), of this mutant strain were overmethylated, as a result of an increase in CheR activity. We speculate that CheC helps to control tumbling frequency by regulating CheR, perhaps by a feedback mechanism through the MCPs. In contrast, a cheD mutant exhibited very tumbly behavior, and many of the MCPs were unmethylated. It seems that some B. subtilis MCPs require the presence of CheD for CheR to methylate them, a unique feature of B. subtilis chemotaxis. It is hypothesized that CheD is part of a complex that facilitates methylation of some of the MCPs, and dissociation of CheD from this complex affects CheA activity and may help bring about adaptation.


Assuntos
Bacillus subtilis/citologia , Proteínas de Bactérias , Quimiotaxia , Proteínas de Membrana/fisiologia , Quimiotaxia/genética , Clonagem Molecular , Escherichia coli/genética , Proteínas de Escherichia coli , Teste de Complementação Genética , Histidina Quinase , Proteínas de Membrana/genética , Proteínas Quimiotáticas Aceptoras de Metil , Metilação , Metiltransferases/metabolismo , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA