Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Viruses ; 15(4)2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-37112842

RESUMO

The mucociliary airway epithelium lines the human airways and is the primary site of host-environmental interactions in the lung. Following virus infection, airway epithelial cells initiate an innate immune response to suppress virus replication. Therefore, defining the virus-host interactions of the mucociliary airway epithelium is critical for understanding the mechanisms that regulate virus infection, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Non-human primates (NHP) are closely related to humans and provide a model to study human disease. However, ethical considerations and high costs can restrict the use of in vivo NHP models. Therefore, there is a need to develop in vitro NHP models of human respiratory virus infection that would allow for rapidly characterizing virus tropism and the suitability of specific NHP species to model human infection. Using the olive baboon (Papio anubis), we have developed methodologies for the isolation, in vitro expansion, cryopreservation, and mucociliary differentiation of primary fetal baboon tracheal epithelial cells (FBTECs). Furthermore, we demonstrate that in vitro differentiated FBTECs are permissive to SARS-CoV-2 infection and produce a potent host innate-immune response. In summary, we have developed an in vitro NHP model that provides a platform for the study of SARS-CoV-2 infection and other human respiratory viruses.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Interações entre Hospedeiro e Microrganismos , Papio , Células Epiteliais , Pulmão
3.
Expert Rev Mol Med ; 24: e33, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36052538

RESUMO

The mammalian respiratory system or lung is a tree-like branching structure, and the main site of gas exchange with the external environment. Structurally, the lung is broadly classified into the proximal (or conducting) airways and the distal alveolar region, where the gas exchange occurs. In parallel with the respiratory tree, the pulmonary vasculature starts with large pulmonary arteries that subdivide rapidly ending in capillaries adjacent to alveolar structures to enable gas exchange. The NOTCH signalling pathway plays an important role in lung development, differentiation and regeneration post-injury. Signalling via the NOTCH pathway is mediated through activation of four NOTCH receptors (NOTCH1-4), with each receptor capable of regulating unique biological processes. Dysregulation of the NOTCH pathway has been associated with development and pathophysiology of multiple adult acute and chronic lung diseases. This includes accumulating evidence that alteration of NOTCH3 signalling plays an important role in the development and pathogenesis of chronic obstructive pulmonary disease, lung cancer, asthma, idiopathic pulmonary fibrosis and pulmonary arterial hypertension. Herein, we provide a comprehensive summary of the role of NOTCH3 signalling in regulating repair/regeneration of the adult lung, its association with development of lung disease and potential therapeutic strategies to target its signalling activity.


Assuntos
Fenômenos Biológicos , Pneumopatias , Animais , Humanos , Mamíferos/metabolismo , Receptor Notch3/genética , Receptor Notch3/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais
4.
Cells ; 10(11)2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34831437

RESUMO

Basal cells (BCs) are stem/progenitor cells of the mucociliary airway epithelium, and their differentiation is orchestrated by the NOTCH signaling pathway. NOTCH3 receptor signaling regulates BC to club cell differentiation; however, the downstream responses that regulate this process are unknown. Overexpression of the active NOTCH3 intracellular domain (NICD3) in primary human bronchial epithelial cells (HBECs) on in vitro air-liquid interface culture promoted club cell differentiation. Bulk RNA-seq analysis identified 692 NICD3-responsive genes, including the classical NOTCH target HEYL, which increased in response to NICD3 and positively correlated with SCGB1A1 (club cell marker) expression. siRNA knockdown of HEYL decreased tight junction formation and cell proliferation. Further, HEYL knockdown reduced club, goblet and ciliated cell differentiation. In addition, we observed decreased expression of HEYL in HBECs from donors with chronic obstructive pulmonary disease (COPD) vs. normal donors which correlates with the impaired differentiation capacity of COPD cells. Finally, overexpression of HEYL in COPD HBECs promoted differentiation into club, goblet and ciliated cells, suggesting the impaired capacity of COPD cells to generate a normal airway epithelium is a reversible phenotype that can be regulated by HEYL. Overall, our data identify the NOTCH3 downstream target HEYL as a key regulator of airway epithelial differentiation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Pulmão/citologia , Receptor Notch3/metabolismo , Proteínas Repressoras/metabolismo , Adulto , Idoso , Ar , Proliferação de Células , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/patologia , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Doadores de Tecidos
5.
Viruses ; 13(8)2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34452468

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19), a global pandemic characterized by an exaggerated immune response and respiratory illness. Age (>60 years) is a significant risk factor for developing severe COVID-19. To better understand the host response of the aged airway epithelium to SARS-CoV-2 infection, we performed an in vitro study using primary human bronchial epithelial cells from donors >67 years of age differentiated on an air-liquid interface culture. We demonstrate that SARS-CoV-2 infection leads to early induction of a proinflammatory response and a delayed interferon response. In addition, we observed changes in the genes and pathways associated with cell death and senescence throughout infection. In summary, our study provides new and important insights into the temporal kinetics of the airway epithelial innate immune response to SARS-CoV-2 in older individuals.


Assuntos
Brônquios/imunologia , Brônquios/virologia , Imunidade Inata , Mucosa Respiratória/imunologia , Mucosa Respiratória/virologia , SARS-CoV-2/imunologia , Idoso , Envelhecimento/imunologia , Brônquios/citologia , Brônquios/metabolismo , COVID-19/imunologia , Morte Celular/genética , Células Cultivadas , Senescência Celular/genética , Citocinas/biossíntese , Citocinas/genética , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Feminino , Humanos , Inflamação , Interferons/biossíntese , Interferons/genética , Masculino , RNA-Seq , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , SARS-CoV-2/fisiologia , Transdução de Sinais/genética
6.
Am J Respir Cell Mol Biol ; 64(4): 426-440, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33444514

RESUMO

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death in the United States and is primarily caused by cigarette smoking. Increased numbers of mucus-producing secretory ("goblet") cells, defined as goblet cell metaplasia or hyperplasia (GCMH), contributes significantly to COPD pathophysiology. The objective of this study was to determine whether NOTCH signaling regulates goblet cell differentiation in response to cigarette smoke. Primary human bronchial epithelial cells (HBECs) from nonsmokers and smokers with COPD were differentiated in vitro on air-liquid interface and exposed to cigarette smoke extract (CSE) for 7 days. NOTCH signaling activity was modulated using 1) the NOTCH/γ-secretase inhibitor dibenzazepine (DBZ), 2) lentiviral overexpression of the NICD3 (NOTCH3-intracellular domain), or 3) NOTCH3-specific siRNA. Cell differentiation and response to CSE were evaluated by quantitative PCR, Western blotting, immunostaining, and RNA sequencing. We found that CSE exposure of nonsmoker airway epithelium induced goblet cell differentiation characteristic of GCMH. Treatment with DBZ suppressed CSE-dependent induction of goblet cell differentiation. Furthermore, CSE induced NOTCH3 activation, as revealed by increased NOTCH3 nuclear localization and elevated NICD3 protein levels. Overexpression of NICD3 increased the expression of goblet cell-associated genes SPDEF and MUC5AC, whereas NOTCH3 knockdown suppressed CSE-mediated induction of SPDEF and MUC5AC. Finally, CSE exposure of COPD airway epithelium induced goblet cell differentiation in a NOTCH3-dependent manner. These results identify NOTCH3 activation as one of the important mechanisms by which cigarette smoke induces goblet cell differentiation, thus providing a novel potential strategy to control GCMH-related pathologies in smokers and patients with COPD.


Assuntos
Brônquios/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Fumar Cigarros/efeitos adversos , Células Caliciformes/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/etiologia , Receptor Notch3/agonistas , Fumaça/efeitos adversos , Produtos do Tabaco/efeitos adversos , Brônquios/metabolismo , Brônquios/patologia , Estudos de Casos e Controles , Células Cultivadas , Células Caliciformes/metabolismo , Células Caliciformes/patologia , Humanos , não Fumantes , Cultura Primária de Células , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Receptor Notch3/genética , Receptor Notch3/metabolismo , Transdução de Sinais , Fumantes , Fatores de Tempo , Transcriptoma
7.
Front Pharmacol ; 10: 20, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30774592

RESUMO

Cystic fibrosis (CF), a fatal genetic disorder predominant in the Caucasian population, is caused by mutations in the cystic fibrosis transmembrane conductance regulator (Cftr) gene. The most common mutation is the deletion of phenylalanine from the position-508 (F508del-CFTR), resulting in a misfolded-CFTR protein, which is unable to fold, traffic and retain its plasma membrane (PM) localization. The resulting CFTR dysfunction, dysregulates variety of key cellular mechanisms such as chloride ion transport, airway surface liquid (ASL) homeostasis, mucociliary-clearance, inflammatory-oxidative signaling, and proteostasis that includes ubiquitin-proteasome system (UPS) and autophagy. A collective dysregulation of these key homoeostatic mechanisms contributes to the development of chronic obstructive cystic fibrosis lung disease, instead of the classical belief focused exclusively on ion-transport defect. Hence, therapeutic intervention(s) aimed at rescuing chronic CF lung disease needs to correct underlying defect that mediates homeostatic dysfunctions and not just chloride ion transport. Since targeting all the myriad defects individually could be quite challenging, it will be prudent to identify a process which controls almost all disease-promoting processes in the CF airways including underlying CFTR dysfunction. There is emerging experimental and clinical evidence that supports the notion that impaired cellular proteostasis and autophagy plays a central role in regulating pathogenesis of chronic CF lung disease. Thus, correcting the underlying proteostasis and autophagy defect in controlling CF pulmonary disease, primarily via correcting the protein processing defect of F508del-CFTR protein has emerged as a novel intervention strategy. Hence, we discuss here both the rationale and significant therapeutic utility of emerging proteostasis and autophagy modulating drugs/compounds in controlling chronic CF lung disease, where targeted delivery is a critical factor-influencing efficacy.

8.
Expert Opin Drug Deliv ; 16(2): 177-186, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30732491

RESUMO

BACKGROUND: Cystic fibrosis (CF) is challenged with pathophysiological barriers for effective airway drug-delivery. Hence, we standardized the therapeutic efficacy of the novel dendrimer-based autophagy-inducing anti-oxidant drug, cysteamine. RESEARCH DESIGN AND METHODS: Human primary-CF epithelial-cells, CFBE41o-cells were used to standardize the efficacy of the dendrimer-cystamine in correcting impaired-autophagy, rescuing ΔF508-CFTR and Pseudomonas-aeruginosa (Pa) infection. RESULTS: We first designed a novel cystamine-core dendrimer formulation (G4-CYS) that significantly increases membrane-ΔF508CFTR expression in CFBE41o-cells (p < 0.05) by forming its reduced-form cysteamine, in vivo. Additionally, G4-CYS treatment corrects ΔF508-CFTR-mediated impaired-autophagy as observed by a significant decrease (p < 0.05) in Ub-LC3-positive aggresome-bodies. Next, we verified that in non-permeabilized CFBE41o-cells, G4-CYS significantly (p < 0.05) induces ΔF508-CFTR's forward-trafficking to the plasma membrane. Furthermore, cysteamine's known antibacterial and anti-biofilm properties against Pa were enhanced as our findings demonstrate that both G4-CYS and its control DAB-core dendrimer, G4-DAB, exhibited significant (p < 0.05) bactericidal-activity against Pa. We also found that both G4-CYS and G4-DAB exhibit marked mucolytic-activity against porcine-mucus (p < 0.05). Finally, we demonstrate that G4-CYS not only corrects the autophagy-impairment by rescuing ΔF508-CFTR in CFBE41o-cells but also corrects the intrinsic phagocytosis defect (p < 0.05). CONCLUSIONS: Overall, our data demonstrates the efficacy of novel cystamine-dendrimer formulation in rescuing ΔF508-CFTR to the plasma membrane and inhibiting Pa bacterial-infection by augmenting autophagy.


Assuntos
Cistamina/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Dendrímeros/administração & dosagem , Infecções por Pseudomonas/tratamento farmacológico , Animais , Antibacterianos/uso terapêutico , Autofagia/efeitos dos fármacos , Biofilmes , Membrana Celular/metabolismo , Fibrose Cística/tratamento farmacológico , Células Epiteliais/metabolismo , Humanos , Transporte Proteico , Suínos
9.
Free Radic Biol Med ; 131: 81-97, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30500419

RESUMO

In this study, we aimed to investigate precise mechanism(s) of sphingolipid-imbalance and resulting ceramide-accumulation in COPD-emphysema. Where, human and murine emphysema lung tissues or human bronchial epithelial cells (Beas2b) were used for experimental analysis. We found that lungs of smokers and COPD-subjects with increasing emphysema severity demonstrate sphingolipid-imbalance, resulting in significant ceramide-accumulation and increased ceramide/sphingosine ratio, as compared to non-emphysema/non-smoker controls. Next, we found a substantial increase in emphysema chronicity-related ceramide-accumulation in murine (C57BL/6) lungs, while sphingosine levels only slightly increased. In accordance, the expression of the acid ceramidase decreased after CS-exposure. Moreover, CS-induced (sub-chronic) ceramide-accumulation was significantly (p < 0.05) reduced by treatment with TFEB/autophagy-inducing drug, gemfibrozil (GEM), suggesting that autophagy regulates CS-induced ceramide-accumulation. Next, we validated experimentally that autophagy/lipophagy-induction using an anti-oxidant, cysteamine, significantly (p < 0.05) reduces CS-extract (CSE)-mediated intracellular-ceramide-accumulation in p62 + aggresome-bodies. In addition to intracellular-accumulation, we found that CSE also induces membrane-ceramide-accumulation by ROS-dependent acid-sphingomyelinase (ASM) activation and plasma-membrane translocation, which was significantly controlled (p < 0.05) by cysteamine (an anti-oxidant) and amitriptyline (AMT, an inhibitor of ASM). Cysteamine-mediated and CSE-induced membrane-ceramide regulation was nullified by CFTR-inhibitor-172, demonstrating that CFTR controls redox impaired-autophagy dependent membrane-ceramide accumulation. In summary, our data shows that CS-mediated autophagy/lipophagy-dysfunction results in intracellular-ceramide-accumulation, while acquired CFTR-dysfunction-induced ASM causes membrane ceramide-accumulation. Thus, CS-exposure alters the sphingolipid-rheostat leading to the increased membrane- and intracellular- ceramide-accumulation inducing COPD-emphysema pathogenesis that is alleviated by treatment with cysteamine, a potent anti-oxidant with CFTR/autophagy-augmenting properties.


Assuntos
Autofagia/efeitos dos fármacos , Ceramidas/metabolismo , Misturas Complexas/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Enfisema/genética , Doença Pulmonar Obstrutiva Crônica/genética , Fumar/efeitos adversos , Ceramidase Ácida/genética , Ceramidase Ácida/metabolismo , Animais , Antioxidantes/farmacologia , Autofagia/genética , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Brônquios/patologia , Estudos de Casos e Controles , Linhagem Celular , Misturas Complexas/isolamento & purificação , Cisteamina/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/deficiência , Enfisema/tratamento farmacológico , Enfisema/metabolismo , Enfisema/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Genfibrozila/farmacologia , Expressão Gênica , Humanos , Hipolipemiantes/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Nicotiana/efeitos adversos , Nicotiana/química
10.
Respir Res ; 19(1): 2, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29301535

RESUMO

BACKGROUND: Chronic lung disease resulting from dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) and NFκB-mediated neutrophilic-inflammation forms the basis of CF-related mortality. Here we aimed to evaluate if HDAC inhibition controls Pseudomonas-aeruginosa-lipopolysaccharide (Pa-LPS) induced airway inflammation and CF-lung disease. METHODS: For in vitro experiments, HEK293-cells were transfected with IL-8 or NFκB-firefly luciferase, and SV40-renilla- luciferase reporter constructs or ΔF508-CFTR-pCEP, followed by treatment with suberoylanilide hydroxamic acid (SAHA), Trichostatin-A (TSA) and/or TNFα. For murine studies, Cftr +/+ or Cftr -/- mice (n = 3) were injected/instilled with Pa-LPS and/or treated with SAHA or vehicle control. The progression of lung disease was monitored by quantifying changes in inflammatory markers (NFκB), cytokines (IL-6/IL-10), neutrophil activity (MPO, myeloperoxidase and/or NIMP-R14) and T-reg numbers. RESULTS: SAHA treatment significantly (p < 0.05) suppresses TNFα-induced NFκB and IL-8 reporter activities in HEK293-cells. Moreover, SAHA, Tubacin (selective HDAC6-inhibitor) or HDAC6-shRNAs controls CSE-induced ER-stress activities (p < 0.05). In addition, SAHA restores trafficking of misfolded-ΔF508-CFTR, by inducing protein levels of both B and C forms of CFTR. Murine studies using Cftr +/+ or Cftr -/- mice verified that SAHA controls Pa-LPS induced IL-6 levels, and neutrophil (MPO levels and/or NIMP-R14), NFκB-(inflammation) and Nrf2 (oxidative-stress marker) activities, while promoting FoxP3+ T-reg activity. CONCLUSION: In summary, SAHA-mediated HDAC inhibition modulates innate and adaptive immune responses involved in pathogenesis and progression of inflammatory CF-lung disease.


Assuntos
Imunidade Adaptativa/fisiologia , Fibrose Cística/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Imunidade Inata/fisiologia , Mediadores da Inflamação/metabolismo , Imunidade Adaptativa/efeitos dos fármacos , Animais , Fibrose Cística/tratamento farmacológico , Fibrose Cística/imunologia , Regulador de Condutância Transmembrana em Fibrose Cística/deficiência , Células HEK293 , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Imunidade Inata/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/metabolismo , Mediadores da Inflamação/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
11.
Am J Physiol Cell Physiol ; 314(1): C73-C87, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27413169

RESUMO

Cigarette-smoke (CS) exposure and aging are the leading causes of chronic obstructive pulmonary disease (COPD)-emphysema development, although the molecular mechanism that mediates disease pathogenesis remains poorly understood. Our objective was to investigate the impact of CS exposure and aging on autophagy and the pathophysiological changes associated with lung aging (senescence) and emphysema progression. Beas2b cells, C57BL/6 mice, and human (GOLD 0-IV) lung tissues were used to determine the central mechanism involved in CS/age-related COPD-emphysema pathogenesis. Beas2b cells and murine lungs exposed to cigarette smoke extract (CSE)/CS showed a significant ( P < 0.05) accumulation of poly-ubiquitinated proteins and impaired autophagy marker, p62, in aggresome bodies. Moreover, treatment with the autophagy-inducing antioxidant drug cysteamine significantly ( P < 0.001) decreased CSE/CS-induced aggresome bodies. We also found a significant ( P < 0.001) increase in levels of aggresome bodies in the lungs of smokers and COPD subjects in comparison to nonsmoker controls. Furthermore, the presence and levels of aggresome bodies statistically correlated with severity of emphysema and alveolar senescence. In addition to CS exposure, lungs from old mice also showed accumulation of aggresome bodies, suggesting this as a common mechanism to initiate cellular senescence and emphysema. Additionally, Beas2b cells and murine lungs exposed to CSE/CS showed cellular apoptosis and senescence, which were both controlled by cysteamine treatment. In parallel, we evaluated the impact of CS on pulmonary exacerbation, using mice exposed to CS and/or infected with Pseudomonas aeruginosa ( Pa), and confirmed cysteamine's potential as an autophagy-inducing antibacterial drug, based on its ability to control CS-induced pulmonary exacerbation ( Pa-bacterial counts) and resulting inflammation. CS induced autophagy impairment accelerates lung aging and COPD-emphysema exacerbations and pathogenesis.


Assuntos
Autofagia , Senescência Celular , Fumar Cigarros/efeitos adversos , Células Epiteliais/ultraestrutura , Pulmão/ultraestrutura , Doença Pulmonar Obstrutiva Crônica/etiologia , Enfisema Pulmonar/etiologia , Fumaça/efeitos adversos , Animais , Autofagia/efeitos dos fármacos , Estudos de Casos e Controles , Linhagem Celular , Senescência Celular/efeitos dos fármacos , Cisteamina/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Corpos de Inclusão/metabolismo , Corpos de Inclusão/ultraestrutura , Mediadores da Inflamação/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Proteína Sequestossoma-1/metabolismo , Índice de Gravidade de Doença , Ubiquitinação
12.
PLoS One ; 12(9): e0184793, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28902888

RESUMO

BACKGROUND: Cystic Fibrosis (CF) is a genetic disorder caused by mutation(s) in the CF-transmembrane conductance regulator (Cftr) gene. The most common mutation, ΔF508, leads to accumulation of defective-CFTR protein in aggresome-bodies. Additionally, Pseudomonas aeruginosa (Pa), a common CF pathogen, exacerbates obstructive CF lung pathology. In the present study, we aimed to develop and test a novel strategy to improve the bioavailability and potentially achieve targeted drug delivery of cysteamine, a potent autophagy-inducing drug with anti-bacterial properties, by developing a dendrimer (PAMAM-DEN)-based cysteamine analogue. RESULTS: We first evaluated the effect of dendrimer-based cysteamine analogue (PAMAM-DENCYS) on the intrinsic autophagy response in IB3-1 cells and observed a significant reduction in Ub-RFP and LC3-GFP co-localization (aggresome-bodies) by PAMAM-DENCYS treatment as compared to plain dendrimer (PAMAM-DEN) control. Next, we observed that PAMAM-DENCYS treatment shows a modest rescue of ΔF508-CFTR as the C-form. Moreover, immunofluorescence microscopy of HEK-293 cells transfected with ΔF508-CFTR-GFP showed that PAMAM-DENCYS is able to rescue the misfolded-ΔF508-CFTR from aggresome-bodies by inducing its trafficking to the plasma membrane. We further verified these results by flow cytometry and observed significant (p<0.05; PAMAM-DEN vs. PAMAM-DENCYS) rescue of membrane-ΔF508-CFTR with PAMAM-DENCYS treatment using non-permeabilized IB3-1 cells immunostained for CFTR. Finally, we assessed the autophagy-mediated bacterial clearance potential of PAMAM-DENCYS by treating IB3-1 cells infected with PA01-GFP, and observed a significant (p<0.01; PAMAM-DEN vs. PAMAM-DENCYS) decrease in intracellular bacterial counts by immunofluorescence microscopy and flow cytometry. Also, PAMAM-DENCYS treatment significantly inhibits the growth of PA01-GFP bacteria and demonstrates potent mucolytic properties. CONCLUSIONS: We demonstrate here the efficacy of dendrimer-based autophagy-induction in preventing sequestration of ΔF508-CFTR to aggresome-bodies while promoting its trafficking to the plasma membrane. Moreover, PAMAM-DENCYS decreases Pa infection and growth, while showing mucolytic properties, suggesting its potential in rescuing Pa-induced ΔF508-CF lung disease that warrants further investigation in CF murine model.


Assuntos
Autofagia/efeitos dos fármacos , Fibrose Cística/complicações , Dendrímeros/farmacologia , Infecções por Pseudomonas/prevenção & controle , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Fibrose Cística/microbiologia , Fibrose Cística/fisiopatologia , Regulador de Condutância Transmembrana em Fibrose Cística/química , Sistemas de Liberação de Medicamentos , Citometria de Fluxo , Células HEK293 , Humanos , Dobramento de Proteína , Infecções por Pseudomonas/fisiopatologia , Pseudomonas aeruginosa
13.
PLoS One ; 12(8): e0182420, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28767736

RESUMO

Age related macular degeneration (AMD) is one of the leading causes of blindness. Genetics, environmental insult, and age-related factors all play a key role in altering proteostasis, the homeostatic process regulating protein synthesis, degradation and processing. These factors also play a role in the pathogenesis of AMD and it has been well established that cigarette smoking (CS) initiates AMD pathogenic mechanisms. The primary goal of this study is to elucidate whether CS can induce proteostasis/autophagy-impairment in retinal pigment epithelial (RPE) cells. In our preliminary analysis, it was found that cigarette smoke extract (CSE) induces accumulation of ubiquitinated proteins in the insoluble protein fraction (p < 0.01), which was subsequently mitigated through cysteamine (p < 0.01) or fisetin (p < 0.05) treatment. Further, it was verified that these CSE induced ubiquitinated proteins accumulated in the peri-nuclear spaces (p<0.05) that were cleared- off with cysteamine (p < 0.05) or fisetin (p < 0.05). Moreover, CSE-induced aggresome-formation (LC3B-GFP and Ub-RFP co-localization) and autophagy-flux impairment was significantly (p<0.01) mitigated by cysteamine (p<0.05) or fisetin (p<0.05) treatment, indicating the restoration of CSE-mediated autophagy-impairment. CSE treatment was also found to induce intracellular reactive oxygen species (ROS, p < 0.001) while impacting cell viability (p < 0.001), which was quantified using CMH2DCFDA-dye (ROS) and MTS (proliferation) or propodium iodide staining (cell viability) assays, respectively. Moreover, cysteamine and fisetin treatment ameliorated CS-mediated ROS production (p < 0.05) and diminished cell viability (p < 0.05). Lastly, CSE was found to induce cellular senescence (p < 0.001), which was significantly ameliorated by cysteamine (p < 0.001) or fisetin (p < 0.001). In conclusion, our study indicates that CS induced proteostasis/autophagy-impairment regulates mechanisms associated with AMD pathogenesis. Moreover, autophagy-inducing drugs such as cysteamine or fisetin can ameliorate AMD pathogenesis mechanisms that warrant further investigation in pre-clinical murine models.


Assuntos
Autofagia/efeitos dos fármacos , Degeneração Macular/patologia , Fumaça/efeitos adversos , Proteínas Ubiquitinadas/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cisteamina/farmacologia , Flavonoides/farmacologia , Flavonóis , Humanos , Degeneração Macular/induzido quimicamente , Espécies Reativas de Oxigênio/metabolismo , Nicotiana/efeitos adversos
14.
Respir Res ; 18(1): 83, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28472967

RESUMO

Chronic obstructive pulmonary disease (COPD) is foremost among the non-reversible fatal ailments where exposure to tobacco/biomass-smoke and aging are the major risk factors for the initiation and progression of the obstructive lung disease. The role of smoke-induced inflammatory-oxidative stress, apoptosis and cellular senescence in driving the alveolar damage that mediates the emphysema progression and severe lung function decline is apparent, although the central mechanism that regulates these processes was unknown. To fill in this gap in knowledge, the central role of proteostasis and autophagy in regulating chronic lung disease causing mechanisms has been recently described. Recent studies demonstrate that cigarette/nicotine exposure induces proteostasis/autophagy-impairment that leads to perinuclear accumulation of polyubiquitinated proteins as aggresome-bodies, indicative of emphysema severity. In support of this concept, autophagy inducing FDA-approved anti-oxidant drugs control tobacco-smoke induced inflammatory-oxidative stress, apoptosis, cellular senescence and COPD-emphysema progression in variety of preclinical models. Hence, we propose that precise and early detection of aggresome-pathology can allow the timely assessment of disease severity in COPD-emphysema subjects for prognosis-based intervention. While intervention with autophagy-inducing drugs is anticipated to reduce alveolar damage and lung function decline, resulting in a decrease in the current mortality rates in COPD-emphysema subjects.


Assuntos
Autofagia/efeitos dos fármacos , Nicotina/intoxicação , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/patologia , Fumaça/efeitos adversos , Animais , Medicina Baseada em Evidências , Humanos , Pulmão , Masculino , Prognóstico , Doença Pulmonar Obstrutiva Crônica/prevenção & controle , Enfisema Pulmonar/prevenção & controle , Fumar , Nicotiana/efeitos adversos
15.
Mol Cell Pediatr ; 4(1): 3, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28150141

RESUMO

BACKGROUND: Exposure to second-hand tobacco smoke (SHS) is one of the prime risk factors for chronic lung disease development. Smoking during pregnancy may lead to birth defects in the newborn that include pulmonary dysfunction, increased susceptibility to opportunistic pathogens, or initiation of childhood respiratory manifestations such as bronchopulmonary dysplasia (BPD). Moreover, exposure to SHS in early childhood can have negative impact on lung health, although the exact mechanisms are unclear. Autophagy is a crucial proteostatic mechanism modulated by cigarette smoke (CS) in adult lungs. Here, we sought to investigate whether SHS exposure impairs autophagy in pediatric lungs. METHODS: Pregnant C57BL/6 mice were exposed to room air or SHS for 14 days. The newborn pups were subsequently exposed to room air or SHS (5 h/day) for 1 or 14 days, and lungs were harvested. Soluble and insoluble protein fractions isolated from pediatric mice lungs were subjected to immunoblotting for ubiquitin (Ub), p62, VCP, HIF-1α, and ß-actin. RESULTS: Our data shows that short-term exposure to SHS (1 or 14 days) leads to proteostasis and autophagy-impairment as evident by significant increase in accumulation of ubiquitinated proteins (Ub), p62 (impaired-autophagy marker) and valosin-containing protein (VCP) in the insoluble protein fractions of pediatric mice lungs. Moreover, increased HIF-1α levels in SHS-exposed mice lungs points towards a novel mechanism for SHS-induced lung disease initiation in the pediatric population. Validating the in vivo studies, we demonstrate that treatment of human bronchial epithelial cells (Beas2b cells) with the proteasome inhibitor (MG-132) induces HIF-1α expression that is controlled by co-treatment with autophagy-inducing drug, cysteamine. CONCLUSIONS: SHS-exposure induced proteostasis/autophagy impairment can mediate the initiation of chronic lung disease in pediatric subjects. Hence, our data warrants the evaluation of proteostasis/autophagy-inducing drugs, such as cysteamine, as a potential therapeutic intervention strategy for SHS-induced pediatric lung diseases.

16.
Antioxid Redox Signal ; 27(3): 150-167, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27835930

RESUMO

AIMS: Recent studies have shown that cigarette smoke (CS)-induced oxidative stress impairs autophagy, resulting in aggresome-formation that correlates with severity of chronic obstructive pulmonary disease (COPD)-emphysema, although the specific step in autophagy pathway that is impaired is unknown. Hence, in this study, we aimed to evaluate the role of master autophagy transcription factor EB (TFEB) in CS-induced COPD-emphysema pathogenesis. RESULTS: We first observed that TFEB accumulates in perinuclear spaces as aggresome-bodies in COPD lung tissues of tobacco smokers and severe emphysema subjects, compared with non-emphysema or nonsmoker controls. Next, Beas2b cells and C57BL/6 mice were exposed to either cigarette smoke extract (CSE) or subchronic-CS (sc-CS), followed by treatment with potent TFEB-inducing drug, gemfibrozil (GEM, or fisetin as an alternate), to experimentally verify the role of TFEB in COPD. Our in vitro results indicate that GEM/fisetin-mediated TFEB induction significantly (p < 0.05) decreases CSE-induced autophagy-impairment (Ub/LC3B reporter and autophagy flux assay) and resulting aggresome-formation (Ub/p62 coexpression/accumulation; immunoblotting and staining) by controlling reactive oxygen species (ROS) activity. Intriguingly, we observed that CS induces TFEB accumulation in the insoluble protein fractions of Beas2b cells, which shows a partial rescue with GEM treatment. Moreover, TFEB knockdown induces oxidative stress, autophagy-impairment, and senescence, which can all be mitigated by GEM-mediated TFEB induction. Finally, in vivo studies were used to verify that CS-induced autophagy-impairment (increased Ub, p62, and valosin-containing protein in the insoluble protein fractions of lung/cell lysates), inflammation (interleukin-6 [IL-6] levels in bronchoalveolar lavage fluid and iNOS expression in lung sections), apoptosis (caspase-3/7), and resulting emphysema (hematoxylin and eosin [H&E]) can be controlled by GEM-mediated TFEB induction (p < 0.05). INNOVATION: CS exposure impairs autophagy in COPD-emphysema by inducing perinuclear localization of master autophagy regulator, TFEB, to aggresome-bodies. CONCLUSION: TFEB-inducing drug(s) can control CS-induced TFEB/autophagy-impairment and COPD-emphysema pathogenesis. Antioxid. Redox Signal. 27, 150-167.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Enfisema Pulmonar/metabolismo , Fumaça/efeitos adversos , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Modelos Animais de Doenças , Feminino , Genfibrozila/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/genética , Nicotiana/efeitos adversos
17.
Antioxid Redox Signal ; 27(7): 433-451, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28006950

RESUMO

AIMS: Cigarette smoke (CS)-mediated acquired cystic fibrosis transmembrane conductance regulator (CFTR)-dysfunction, autophagy-impairment, and resulting inflammatory-oxidative/nitrosative stress leads to chronic obstructive pulmonary disease (COPD)-emphysema pathogenesis. Moreover, nitric oxide (NO) signaling regulates lung function decline, and low serum NO levels that correlates with COPD severity. Hence, we aim to evaluate here the effects and mechanism(s) of S-nitrosoglutathione (GSNO) augmentation in regulating inflammatory-oxidative stress and COPD-emphysema pathogenesis. RESULTS: Our data shows that cystic fibrosis transmembrane conductance regulator (CFTR) colocalizes with aggresome bodies in the lungs of COPD subjects with increasing emphysema severity (Global Initiative for Chronic Obstructive Lung Disease [GOLD] I - IV) compared to nonemphysema controls (GOLD 0). We further demonstrate that treatment with GSNO or S-nitrosoglutathione reductase (GSNOR)-inhibitor (N6022) significantly inhibits cigarette smoke extract (CSE; 5%)-induced decrease in membrane CFTR expression by rescuing it from ubiquitin (Ub)-positive aggresome bodies (p < 0.05). Moreover, GSNO restoration significantly (p < 0.05) decreases CSE-induced reactive oxygen species (ROS) activation and autophagy impairment (decreased accumulation of ubiquitinated proteins in the insoluble protein fractions and restoration of autophagy flux). In addition, GSNO augmentation inhibits protein misfolding as CSE-induced colocalization of ubiquitinated proteins and LC3B (in autophagy bodies) is significantly reduced by GSNO/N6022 treatment. We verified using the preclinical COPD-emphysema murine model that chronic CS (Ch-CS)-induced inflammation (interleukin [IL]-6/IL-1ß levels), aggresome formation (perinuclear coexpression/colocalization of ubiquitinated proteins [Ub] and p62 [impaired autophagy marker], and CFTR), oxidative/nitrosative stress (p-Nrf2, inducible nitric oxide synthase [iNOS], and 3-nitrotyrosine expression), apoptosis (caspase-3/7 activity), and alveolar airspace enlargement (Lm) are significantly (p < 0.05) alleviated by augmenting airway GSNO levels. As a proof of concept, we demonstrate that GSNO augmentation suppresses Ch-CS-induced perinuclear CFTR protein accumulation (p < 0.05), which restores both acquired CFTR dysfunction and autophagy impairment, seen in COPD-emphysema subjects. INNOVATION: GSNO augmentation alleviates CS-induced acquired CFTR dysfunction and resulting autophagy impairment. CONCLUSION: Overall, we found that augmenting GSNO levels controls COPD-emphysema pathogenesis by reducing CS-induced acquired CFTR dysfunction and resulting autophagy impairment and chronic inflammatory-oxidative stress. Antioxid. Redox Signal. 27, 433-451.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Enfisema Pulmonar/tratamento farmacológico , S-Nitrosoglutationa/administração & dosagem , Fumaça/efeitos adversos , Animais , Autofagia/efeitos dos fármacos , Benzamidas/farmacologia , Linhagem Celular , Humanos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/imunologia , Pirróis/farmacologia , S-Nitrosoglutationa/farmacologia , Produtos do Tabaco
18.
Mediators Inflamm ; 2017: 3028082, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29445254

RESUMO

INTRODUCTION: Cigarette smoke (CS) exposure is the leading risk factor for COPD-emphysema pathogenesis. A common characteristic of COPD is impaired phagocytosis that causes frequent exacerbations in patients leading to increased morbidity. However, the underlying mechanism is unclear. Hence, we investigated if CS exposure causes autophagy impairment as a mechanism for diminished bacterial clearance via phagocytosis by utilizing murine macrophages (RAW264.7 cells) and Pseudomonas aeruginosa (PA01-GFP) as an experimental model. METHODS: Briefly, RAW cells were treated with cigarette smoke extract (CSE), chloroquine (autophagy inhibitor), TFEB-shRNA, CFTR(inh)-172, and/or fisetin prior to bacterial infection for functional analysis. RESULTS: Bacterial clearance of PA01-GFP was significantly impaired while its survival was promoted by CSE (p < 0.01), autophagy inhibition (p < 0.05; p < 0.01), TFEB knockdown (p < 0.01; p < 0.001), and inhibition of CFTR function (p < 0.001; p < 0.01) in comparison to the control group(s) that was significantly recovered by autophagy-inducing antioxidant drug, fisetin, treatment (p < 0.05; p < 0.01; and p < 0.001). Moreover, investigations into other pharmacological properties of fisetin show that it has significant mucolytic and bactericidal activities (p < 0.01; p < 0.001), which warrants further investigation. CONCLUSIONS: Our data suggests that CS-mediated autophagy impairment as a critical mechanism involved in the resulting phagocytic defect, as well as the therapeutic potential of autophagy-inducing drugs in restoring is CS-impaired phagocytosis.


Assuntos
Autofagia/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Nicotiana/efeitos adversos , Fagocitose , Fumaça/efeitos adversos , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Flavonóis , Macrófagos/fisiologia , Camundongos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Células RAW 264.7
20.
Nanomedicine ; 12(8): 2415-2427, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27381067

RESUMO

The success of drug delivery to target airway cell(s) remains a significant challenge due to the limited ability of nanoparticle (NP) systems to circumvent protective airway-defense mechanisms. The size, density, surface and physical-chemical properties of nanoparticles are the key features that determine their ability to navigate across the airway-barrier. We evaluated here the efficacy of a PEGylated immuno-conjugated PLGA-nanoparticle (PINP) to overcome this challenge and selectively deliver drug to specific inflammatory cells (neutrophils). We first characterized the size, shape, surface-properties and neutrophil targeting using dynamic laser scattering, transmission electron microscopy and flow cytometry. Next, we assessed the efficacy of neutrophil-targeted PINPs in transporting through the airway followed by specific binding and release of drug to neutrophils. Finally, our results demonstrate the efficacy of PINP mediated non-steroidal anti-inflammatory drug-(ibuprofen) delivery to neutrophils in murine models of obstructive lung diseases, based on its ability to control neutrophilic-inflammation and resulting lung disease.


Assuntos
Nanopartículas , Neutrófilos/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Animais , Sistemas de Liberação de Medicamentos , Humanos , Inflamação/tratamento farmacológico , Ácido Láctico , Camundongos , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA