Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 325
Filtrar
1.
Cell Death Dis ; 15(1): 95, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287022

RESUMO

Abnormal expression of Cylindromatosis (CYLD), a tumor suppressor molecule, plays an important role in tumor development and treatment. In this work, we found that CYLD binds to class I histone deacetylases (HDAC1 and HDAC2) through its N-terminal domain and inhibits HDAC1 activity. RNA sequencing showed that CYLD-HDAC axis regulates cellular antioxidant response via Nrf2 and its target genes. Then we revealed a mechanism that class I HDACs mediate redox abnormalities in CYLD low-expressing tumors. HDACs are central players in the DNA damage signaling. We further confirmed that CYLD regulates radiation-induced DNA damage and repair response through inhibiting class I HDACs. Furthermore, CYLD mediates nasopharyngeal carcinoma cell radiosensitivity through class I HDACs. Thus, we identified the function of the CYLD-HDAC axis in radiotherapy and blocking HDACs by Chidamide can increase the sensitivity of cancer cells and tumors to radiation therapy both in vitro and in vivo. In addition, ChIP and luciferase reporter assays revealed that CYLD could be transcriptionally regulated by zinc finger protein 202 (ZNF202). Our findings offer novel insight into the function of CYLD in tumor and uncover important roles for CYLD-HDAC axis in radiosensitivity, which provide new molecular target and therapeutic strategy for tumor radiotherapy.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias Nasofaríngeas , Humanos , Inibidores de Histona Desacetilases/farmacologia , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/radioterapia , Estresse Oxidativo , Histona Desacetilases/metabolismo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/radioterapia , Enzima Desubiquitinante CYLD/genética , Enzima Desubiquitinante CYLD/metabolismo , Proteínas Repressoras/metabolismo
2.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-37873235

RESUMO

Telomeres protect chromosome ends and determine the replication potential of dividing cells. The canonical telomere sequence TTAGGG is synthesized by telomerase holoenzyme, which maintains telomere length in proliferative stem cells. Although the core components of telomerase are well-defined, mechanisms of telomerase regulation are still under investigation. We report a novel role for the Src family kinase Fyn, which disrupts telomere maintenance in stem cells by phosphorylating the scaffold protein Menin. We found that Fyn knockdown prevented telomere erosion in human and mouse stem cells, validating the results with four telomere measurement techniques. We show that Fyn phosphorylates Menin at tyrosine 603 (Y603), which increases Menin's SUMO1 modification, C-terminal stability, and importantly, its association with the telomerase RNA component (TR). Using mass spectrometry, immunoprecipitation, and immunofluorescence experiments we found that SUMO1-Menin decreases TR's association with telomerase subunit Dyskerin, suggesting that Fyn's phosphorylation of Menin induces telomerase subunit mislocalization and may compromise telomerase function at telomeres. Importantly, we find that Fyn inhibition reduces accelerated telomere shortening in human iPSCs harboring mutations for dyskeratosis congenita.

3.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958502

RESUMO

Nonmelanoma skin cancers (NMSC) are the most common skin cancers, and about 5.4 million people are diagnosed each year in the United States. A newly developed T-lymphokine-activated killer cell-originated protein kinase (TOPK) inhibitor, HI-TOPK-032, is effective in suppressing colon cancer cell growth, inducing the apoptosis of colon cancer cells and ultraviolet (UV) light-induced squamous cell carcinoma (SCC). This study aimed to investigate the physicochemical properties, permeation behavior, and cytotoxicity potential of HI-TOPK-032 prior to the development of a suitable topical formulation for targeted skin drug delivery. Techniques such as scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, differential scanning calorimetry (DSC), hot-stage microscopy (HSM), X-ray powder diffraction (XRPD), Karl Fisher (KF) coulometric titration, Raman spectrometry, confocal Raman microscopy (CRM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and Fourier transform infrared microscopy were used to characterize HI-TOPK-032. The dose effect of HI-TOPK-032 on in vitro cell viability was evaluated using a 2D cell culture of the human skin keratinocyte cell line (HaCaT) and primary normal human epidermal keratinocytes (NHEKs). Transepithelial electrical resistance (TEER) at the air-liquid interface as a function of dose and time was measured on the HaCAT human skin cell line. The membrane permeation behavior of HI-TOPK-032 was tested using the Strat-M® synthetic biomimetic membrane with an in vitro Franz cell diffusion system. The physicochemical evaluation results confirmed the amorphous nature of the drug and the homogeneity of the sample with all characteristic chemical peaks. The in vitro cell viability assay results confirmed 100% cell viability up to 10 µM of HI-TOPK-032. Further, a rapid, specific, precise, and validated reverse phase-high performance liquid chromatography (RP-HPLC) method for the quantitative estimation of HI-TOPK-032 was developed. This is the first systematic and comprehensive characterization of HI-TOPK-032 and a report of these findings.


Assuntos
Neoplasias do Colo , Neoplasias Cutâneas , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias Cutâneas/patologia , Neoplasias do Colo/patologia , Técnicas de Cultura de Células
4.
Biochim Biophys Acta Rev Cancer ; 1878(6): 189023, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37979733

RESUMO

The high prevalence of metabolic reprogramming in nasopharyngeal carcinoma (NPC) offers an abundance of potential therapeutic targets. This review delves into the distinct mechanisms underlying metabolic reprogramming in NPC, including enhanced glycolysis, nucleotide synthesis, and lipid metabolism. All of these changes are modulated by Epstein-Barr virus (EBV) infection, hypoxia, and tumor microenvironment. We highlight the role of metabolic reprogramming in the development of NPC resistance to standard therapies, which represents a challenging barrier in treating this malignancy. Furthermore, we dissect the state of the art in therapeutic strategies that target these metabolic changes, evaluating the successes and failures of clinical trials and the strategies to tackle resistance mechanisms. By providing a comprehensive overview of the current knowledge and future directions in this field, this review sets the stage for new therapeutic avenues in NPC.


Assuntos
Carcinoma , Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Infecções por Vírus Epstein-Barr/complicações , Carcinoma/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Herpesvirus Humano 4/metabolismo , Microambiente Tumoral
5.
J Exp Clin Cancer Res ; 42(1): 261, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37803433

RESUMO

BACKGROUND: Epstein-Barr virus (EBV) is the first discovered human tumor virus that is associated with a variety of malignancies of both lymphoid and epithelial origin including nasopharyngeal carcinoma (NPC). The EBV-encoded latent membrane protein 1 (LMP1) has been well-defined as a potent oncogenic protein, which is intimately correlated with NPC pathogenesis. Anoikis is considered to be a physiological barrier to metastasis, and avoiding anoikis is a major hallmark of metastasis. However, the role of LMP1 in anoikis-resistance and metastasis of NPC has not been fully identified. METHODS: Trypan blue staining, colony formation assay, flow cytometry, and TUNEL staining, as well as the detection of apoptosis and anoikis resistance-related markers was applied to evaluate the anoikis-resistant capability of NPC cells cultured in ultra-low adhesion condition. Co-immunoprecipitation (Co-IP) experiment was performed to determine the interaction among LMP1, PRMT1 and PGC-1α. Ex vivo ubiquitination assay was used to detect the ubiquitination level of PGC-1α. Anoikis- resistant LMP1-positive NPC cell lines were established and applied for the xenograft and metastatic animal experiments. RESULTS: Our current findings reveal the role of LMP1-stabilized peroxisome proliferator activated receptor coactivator-1a (PGC-1α) in anoikis resistance and immune escape to support the invasion and metastasis of NPC. Mechanistically, LMP1 enhances PGC-1α protein stability by promoting the interaction between arginine methyltransferase 1 (PRMT1) and PGC-1α to elevate the methylation modification of PGC-1α, thus endowing NPC cells with anoikis-resistance. Meanwhile, PGC-1α mediates the immune escape induced by LMP1 by coactivating with STAT3 to transcriptionally up-regulate PD-L1 expression. CONCLUSION: Our work provides insights into how virus-encoded proteins recruit and interact with host regulatory elements to facilitate the malignant progression of NPC. Therefore, targeting PGC-1α or PRMT1-PGC-1α interaction might be exploited for therapeutic gain for EBV-associated malignancies.


Assuntos
Carcinoma , Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Animais , Humanos , Carcinoma Nasofaríngeo/genética , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Anoikis , Neoplasias Nasofaríngeas/tratamento farmacológico , Proteínas de Membrana/metabolismo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Linhagem Celular Tumoral , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo
6.
Cancers (Basel) ; 15(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37835367

RESUMO

Carcinogenesis, the process by which normal cells transform into cancer cells, is complex and multifaceted [...].

7.
NPJ Precis Oncol ; 7(1): 58, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311884

RESUMO

Cyclin dependent kinases (CDKs) are serine/threonine kinases that are proposed as promising candidate targets for cancer treatment. These proteins complexed with cyclins play a critical role in cell cycle progression. Most CDKs demonstrate substantially higher expression in cancer tissues compared with normal tissues and, according to the TCGA database, correlate with survival rate in multiple cancer types. Deregulation of CDK1 has been shown to be closely associated with tumorigenesis. CDK1 activation plays a critical role in a wide range of cancer types; and CDK1 phosphorylation of its many substrates greatly influences their function in tumorigenesis. Enrichment of CDK1 interacting proteins with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was conducted to demonstrate that the associated proteins participate in multiple oncogenic pathways. This abundance of evidence clearly supports CDK1 as a promising target for cancer therapy. A number of small molecules targeting CDK1 or multiple CDKs have been developed and evaluated in preclinical studies. Notably, some of these small molecules have also been subjected to human clinical trials. This review evaluates the mechanisms and implications of targeting CDK1 in tumorigenesis and cancer therapy.

8.
Int J Mol Sci ; 24(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37240122

RESUMO

Cutaneous squamous cell carcinoma (cSCC) is the second-most common type of non-melanoma skin cancer and is linked to long-term exposure to ultraviolet (UV) radiation from the sun. Rocuronium bromide (RocBr) is an FDA-approved drug that targets p53-related protein kinase (PRPK) that inhibits the development of UV-induced cSCC. This study aimed to investigate the physicochemical properties and in vitro behavior of RocBr. Techniques such as thermal analysis, electron microscopy, spectroscopy and in vitro assays were used to characterize RocBr. A topical oil/water emulsion lotion formulation of RocBr was successfully developed and evaluated. The in vitro permeation behavior of RocBr from its lotion formulation was quantified with Strat-M® synthetic biomimetic membrane and EpiDerm™ 3D human skin tissue. Significant membrane retention of RocBr drug was evident and more retention was obtained with the lotion formulation compared with the solution. This is the first systematic and comprehensive study to report these findings.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Cutâneas , Humanos , Rocurônio/farmacologia , Carcinoma de Células Escamosas/patologia , Neoplasias Cutâneas/patologia , Pele/metabolismo , Preparações Farmacêuticas/metabolismo , Técnicas de Cultura de Células
9.
Endocrinology ; 164(6)2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37216932

RESUMO

Endometriosis is an estrogen-dependent disorder defined as the deposition and growth of endometrial tissue outside the uterus, including but not limited to the pelvic peritoneum, rectovaginal septum, and ovaries. Endometriosis is a substantial contributor to pelvic pain and subfertility and has been associated with an increased incidence of certain cancers, including ovarian. Appropriate treatment of endometriosis can reduce morbidity, but generally is used only to address symptoms, since no cure currently exists. Multifactorial etiologies for endometriosis have been proposed, with significant evidence for genetic, immune, and environmental causes. Recent advances suggest that molecular signaling and programmed cell death pathways are involved in endometriosis, suggesting avenues for future curative treatments. The goal of this review is to examine the pathologic processes of endometriosis, focusing on cell signaling and cell death pathways, stem cells, treatment regimens, and future directions surrounding this gynecologic disorder.


Assuntos
Endometriose , Feminino , Humanos , Endometriose/patologia , Peritônio/metabolismo , Peritônio/patologia , Útero/metabolismo , Transdução de Sinais , Morte Celular
11.
Cell Death Dis ; 13(10): 845, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192391

RESUMO

The short-chain dehydrogenase/reductase (SDR) superfamily has essential roles in lipid metabolism and redox sensing. In recent years, accumulating evidence highlights the emerging association between SDR family enzymes and cancer. Dehydrogenase/reductase member 2(DHRS2) belongs to the NADH/NADPH-dependent SDR family, and extensively participates in the regulation of the proliferation, migration, and chemoresistance of cancer cells. However, the underlying mechanism has not been well defined. In the present study, we have demonstrated that DHRS2 inhibits the growth and metastasis of ovarian cancer (OC) cells in vitro and in vivo. Mechanistically, the combination of transcriptome and metabolome reveals an interruption of choline metabolism by DHRS2. DHRS2 post-transcriptionally downregulates choline kinase α (CHKα) to inhibit AKT signaling activation and reduce phosphorylcholine (PC)/glycerophosphorylcholine (GPC) ratio, impeding choline metabolism reprogramming in OC. These actions mainly account for the tumor-suppressive role of DHRS2 in OC. Overall, our findings establish the mechanistic connection among metabolic enzymes, metabolites, and the malignant phenotype of cancer cells. This could result in further development of novel pharmacological tools against OC by the induction of DHRS2 to disrupt the choline metabolic pathway.


Assuntos
Colina Quinase , Neoplasias Ovarianas , Carbonil Redutase (NADPH)/genética , Carbonil Redutase (NADPH)/metabolismo , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Proliferação de Células , Colina/metabolismo , Colina Quinase/genética , Colina Quinase/metabolismo , Regulação para Baixo , Feminino , Glicerilfosforilcolina/metabolismo , Humanos , NAD/metabolismo , NADP/metabolismo , Neoplasias Ovarianas/genética , Oxirredutases/genética , Fosforilcolina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
12.
Eur J Pharmacol ; 931: 175216, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35988787

RESUMO

Deregulation of protein post-translational modifications is intensively involved in the etiology of diseases, including degenerative diseases, inflammatory injuries, and cancers. Acetylation is one of the most common post-translational modifications of proteins, and the acetylation levels are controlled by two mutually antagonistic enzyme families, histone acetyl transferases (HATs) and histone deacetylases (HDACs). HATs loosen the chromatin structure by neutralizing the positive charge of lysine residues of histones; whereas HDACs deacetylate certain histones, thus inhibiting gene transcription. Compared with HATs, HDACs have been more intensively studied, particularly regarding their clinical significance. HDACs extensively participate in the regulation of proliferation, migration, angiogenesis, immune escape, and therapeutic resistance of cancer cells, thus emerging as critical targets for clinical cancer therapy. Compared to HATs, inhibitors of HDAC have been clinically used for cancer treatment. Here, we enumerate and integratethe mechanisms of HDAC family members in tumorigenesis and cancer progression, and address the new and exciting therapeutic implications of single or combined HDAC inhibitor (HDACi) treatment.


Assuntos
Histona Desacetilases , Neoplasias , Acetilação , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Neoplasias/tratamento farmacológico
14.
Cell Death Dis ; 13(4): 331, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35411000

RESUMO

As the first rate-limiting enzyme in fatty acid oxidation (FAO), CPT1 plays a significant role in metabolic adaptation in cancer pathogenesis. FAO provides an alternative energy supply for cancer cells and is required for cancer cell survival. Given the high proliferation rate of cancer cells, nucleotide synthesis gains prominence in rapidly proliferating cells. In the present study, we found that CPT1A is a determining factor for the abnormal activation of FAO in nasopharyngeal carcinoma (NPC) cells. CPT1A is highly expressed in NPC cells and biopsies. CPT1A dramatically affects the malignant phenotypes in NPC, including proliferation, anchorage-independent growth, and tumor formation ability in nude mice. Moreover, an increased level of CPT1A promotes core metabolic pathways to generate ATP, inducing equivalents and the main precursors for nucleotide biosynthesis. Knockdown of CPT1A markedly lowers the fraction of 13C-palmitate-derived carbons into pyrimidine. Periodic activation of CPT1A increases the content of nucleoside metabolic intermediates promoting cell cycle progression in NPC cells. Targeting CPT1A-mediated FAO hinders the cell cycle G1/S transition. Our work verified that CPT1A links FAO to cell cycle progression in NPC cellular proliferation, which supplements additional experimental evidence for developing a therapeutic mechanism based on manipulating lipid metabolism.


Assuntos
Carnitina O-Palmitoiltransferase , Neoplasias Nasofaríngeas , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Proliferação de Células , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Camundongos , Camundongos Nus , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Nucleosídeos/metabolismo , Nucleotídeos/metabolismo , Oxirredução
15.
Cancer Res ; 82(6): 949-965, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34949672

RESUMO

Because of profound effects observed in carcinogenesis, prostaglandins (PG), prostaglandin-endoperoxide synthases, and PG receptors are implicated in cancer development and progression. Understanding the molecular mechanisms of PG actions has potential clinical relevance for cancer prevention and therapy. This review focuses on the current status of PG signaling pathways in modulating cancer progression and aims to provide insights into the mechanistic actions of PGs and their receptors in influencing tumor progression. We also examine several small molecules identified as having anticancer activity that target prostaglandin receptors. The literature suggests that targeting PG pathways could provide opportunities for cancer prevention and therapy.


Assuntos
Neoplasias , Prostaglandinas , Humanos , Neoplasias/prevenção & controle , Prostaglandina-Endoperóxido Sintases/metabolismo , Prostaglandinas/metabolismo , Receptores de Prostaglandina/metabolismo , Transdução de Sinais
16.
Front Oncol ; 11: 769036, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868997

RESUMO

The emergence, in recent decades, of an entirely new area of "Mitochondrial dynamics", which consists principally of fission and fusion, reflects the recognition that mitochondria play a significant role in human tumorigenesis and response to therapeutics. Proteins that determine mitochondrial dynamics are referred to as "shaping proteins". Marked heterogeneity has been observed in the response of tumor cells to chemotherapy, which is associated with imbalances in mitochondrial dynamics and function leading to adaptive and acquired resistance to chemotherapeutic agents. Therefore, targeting mitochondria-shaping proteins may prove to be a promising approach to treat chemotherapy resistant cancers. In this review, we summarize the alterations of mitochondrial dynamics in chemotherapeutic processing and the antitumor mechanisms by which chemotherapy drugs synergize with mitochondria-shaping proteins. These might shed light on new biomarkers for better prediction of cancer chemosensitivity and contribute to the exploitation of potent therapeutic strategies for the clinical treatment of cancers.

17.
EMBO Mol Med ; 13(12): e14072, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34755470

RESUMO

Adenine nucleotide translocase-1 (ANT1) is an ADP/ATP transporter protein located in the inner mitochondrial membrane. ANT1 is involved not only in the processes of ADP/ATP exchange but also in the composition of the mitochondrial membrane permeability transition pore (mPTP); and the function of ANT1 is closely related to its own conformational changes. Notably, various viral proteins can interact directly with ANT1 to influence mitochondrial membrane potential by regulating the opening of mPTP, thereby affecting tumor cell fate. The Epstein-Barr virus (EBV) encodes the key tumorigenic protein, latent membrane protein 1 (LMP1), which plays a pivotal role in promoting therapeutic resistance in related tumors. In our study, we identified a novel mechanism for EBV-LMP1-induced alteration of ANT1 conformation in cisplatin resistance in nasopharyngeal carcinoma. Here, we found that EBV-LMP1 localizes to the inner mitochondrial membrane and inhibits the opening of mPTP by binding to ANT1, thereby favoring tumor cell survival and drug resistance. The ANT1 conformational inhibitor carboxyatractyloside (CATR) in combination with cisplatin improved the chemosensitivity of EBV-LMP1-positive cells. This finding confirms that ANT1 is a novel therapeutic target for overcoming cisplatin resistance in the future.


Assuntos
Translocador 1 do Nucleotídeo Adenina/química , Cisplatino , Infecções por Vírus Epstein-Barr , Cisplatino/metabolismo , Cisplatino/farmacologia , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Herpesvirus Humano 4/metabolismo , Humanos , Translocases Mitocondriais de ADP e ATP/química , Translocases Mitocondriais de ADP e ATP/metabolismo , Membranas Mitocondriais/metabolismo
18.
Eur J Pharmacol ; 909: 174397, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34332918

RESUMO

Accumulating evidence shows that deregulation of fatty acid (FA) metabolism is associated with the development of cancer. Long-chain acyl-coenzyme A synthases (ACSLs) are responsible for activating long-chain FAs and are frequently deregulated in cancers. Among the five mammalian ACSL family members, ACSL1 is involved in the TNFα-mediated pro-inflammatory phenotype and mainly facilitates cancer progression. ACSL3 is an androgen-responsive gene. High ACSL3 expression has been detected in a variety of cancers, including melanoma, triple-negative breast cancer (TNBC) and high-grade non-small cell lung carcinoma (NSCLC), and correlates with worse prognosis of patients with these diseases. ACSL4 can exert opposing roles acting as a tumor suppressor or as an oncogene depending on the specific cancer type and tissue environment. Moreover, ACSL4 behaves as a crucial regulator in ferroptosis that is defined as a cell death process caused by iron-dependent peroxidation of lipids. ACSL5 is nuclear-coded and expressed in the mitochondria and physiologically participates in the pro-apoptotic sensing of cells. ACSL5 mainly acts as a tumor suppressor in cancers. ACSL6 downregulation has been observed in many forms of cancers, except in colorectal cancer (CRC). Here, we address the differential regulatory mechanisms of the ACSL family members as well as their functions in carcinogenesis. Moreover, we enumerate the clinical therapeutic implications of ACSLs, which might serve as valuable biomarkers and therapeutic targets for precision cancer treatment.


Assuntos
Antineoplásicos/uso terapêutico , Coenzima A Ligases/metabolismo , Ativadores de Enzimas/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Coenzima A Ligases/antagonistas & inibidores , Coenzima A Ligases/genética , Modelos Animais de Doenças , Ativadores de Enzimas/farmacologia , Inibidores Enzimáticos/farmacologia , Ácidos Graxos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Oncogênicas/antagonistas & inibidores , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/agonistas , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Oncol Rev ; 15(1): 525, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33824700

RESUMO

Regulator of chromosome condensation 2 (RCC2) is an essential protein in order for mitosis to proceed properly. It localizes in the centrosome of chromosomes where is involved in chromosome segregation and cytokinesis. Furthermore, RCC2 associates with integrin networks at the plasma membrane where participates in the control of cell movement. Because of its known role in cell cycle, RCC2 has been linked with cancer progression. Several reports show that RCC2 induces cancer hallmarks, but the mechanisms explaining how RCC2 exerts these roles are widely unknown. Here, we aim to summarize the main findings explaining the roles and mechanisms of RCC2 in cancer promotion. RCC2 is overexpressed in different cancers, including glioblastoma, lung, ovarian, and esophageal which is related to proliferation, migration, invasion promotion in vitro and tumor progression and metastasis in vivo. Besides, RCC2 overexpression induces epithelial-mesenchymal transition and causes poorer prognosis in cancer patients. RCC2 overexpression has also been linked with resistance development to chemotherapy and radiotherapy by inhibiting apoptosis and activating cancer-promoting transcription factors. Unfortunately, not RCC2 inhibitors are currently available for further pre-clinical and clinical assays. Therefore, these findings emphasize the potential use of RCC2 as a targetable biomarker in cancer and highlight the importance for designing RCC2 chemical inhibitors to evaluate its efficacy in animal studies and clinical trials.

20.
NPJ Precis Oncol ; 5(1): 14, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33654169

RESUMO

p18 is a key negative regulator of cell cycle progression and mediates cell cycle arrest at the G1/S phase. Ubiquitination is the prime mechanism in regulating p18 protein abundance. However, so far no post- translational regulator, especially DUBs, has been identified to regulate the protein stability of p18. In this paper, we identified CYLD as a deubiquitinase of p18, which binds to and removes the K48-linked polyubiquitylation chains conjugated onto p18, thus stabilizing the p18 protein. Loss of CYLD causes the degradation of p18 and induces the G1/S transition. Epstein-Barr virus (EBV), is the human oncovirus etiologically linked to nasopharyngeal carcinoma (NPC). Here we found that EBV drives a replication passive environment by deregulating the CYLD-p18 axis. Functionally, CYLD inhibits cell proliferation and tumorigenesis through p18 in vivo. Restoring CYLD prevents EBV induced viral replication and tumor growth. Collectively, our results identify CYLD directly stabilizes p18 to regulate the cellular G1/S transition. The reconstitution of CYLD-p18 axis could be a promising approach for EBV-positive cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA