Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 370: 468-478, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38697314

RESUMO

A critical parameter during the development of protein therapeutics is to endow them with suitable pharmacokinetic and pharmacodynamic properties. Small protein drugs are quickly eliminated by kidney filtration, and in vivo half-life extension is therefore often desired. Here, different half-life extension technologies were studied where PAS polypeptides (PAS300, PAS600), XTEN polypeptides (XTEN288, XTEN576), and an albumin binding domain (ABD) were compared for half-life extension of an anti-human epidermal growth factor receptor 2 (HER2) affibody-drug conjugate. The results showed that extension with the PAS or XTEN polypeptides or the addition of the ABD lowered the affinity for HER2 to some extent but did not negatively affect the cytotoxic potential. The half-lives in mice ranged from 7.3 h for the construct including PAS300 to 11.6 h for the construct including PAS600. The highest absolute tumor uptake was found for the construct including the ABD, which was 60 to 160% higher than the PASylated or XTENylated constructs, even though it did not have the longest half-life (9.0 h). A comparison of the tumor-to-normal-organ ratios showed the best overall performance of the ABD-fused construct. In conclusion, PASylation, XTENylation, and the addition of an ABD are viable strategies for half-life extension of affibody-drug conjugates, with the best performance observed for the construct including the ABD.

2.
Front Oncol ; 13: 1221103, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37829345

RESUMO

Introduction: Prostate specific membrane antigen (PSMA), highly expressed in metastatic castration-resistant prostate cancer (mCRPC), is an established therapeutic target. Theranostic PSMA-targeting agents are widely used in patient management and has shown improved outcomes for mCRPC patients. Earlier, we optimized a urea-based probe for radionuclide visualization of PSMA-expression in vivo using computer modeling. With the purpose to develop a targeting agent equally suitable for radionuclide imaging and therapy, the agent containing DOTA chelator was designed (BQ7876). The aim of the study was to test the hypothesis that 177Lu-labeled BQ7876 possesses target binding and biodistribution properties potentially enabling its use for radiotherapy. Methods: BQ7876 was synthesized and labeled with Lu-177. Specificity and affinity of [177Lu]Lu-BQ7876 to PSMA-expressing PC3-pip cells was evaluated and its processing after binding to cells was studied. Animal studies in mice were performed to assess its biodistribution in vivo, target specificity and dosimetry. [177Lu]Lu-PSMA-617 was simultaneously evaluated for comparison. Results: BQ7876 was labeled with Lu-177 with radiochemical yield >99%. Its binding to PSMA was specific in vitro and in vivo when tested in antigen saturation conditions as well as in PSMA-negative PC-3 tumors. The binding of [177Lu]Lu-BQ7876 to living cells was characterized by rapid association, while the dissociation included a rapid and a slow phase with affinities KD1 = 3.8 nM and KD2 = 25 nM. The half-maximal inhibitory concentration for natLu-BQ7876 was 59 nM that is equal to 61 nM for natLu-PSMA-617. Cellular processing of [177Lu]Lu-BQ7876 was accompanied by slow internalization. [177Lu]Lu-BQ7876 was cleared from blood and normal tissues rapidly. Initial elevated uptake in kidneys decreased rapidly, and by 3 h post injection, the renal uptake (13 ± 3%ID/g) did not differ significantly from tumor uptake (9 ± 3%ID/g). Tumor uptake was stable between 1 and 3 h followed by a slow decline. The highest absorbed dose was in kidneys, followed by organs and tissues in abdomen. Discussion: Biodistribution studies in mice demonstrated that targeting properties of [177Lu]Lu-BQ7876 are not inferior to properties of [177Lu]Lu-PSMA-617, but do not offer any decisive advantages.

3.
Int J Mol Sci ; 24(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37569582

RESUMO

Prostate-specific membrane antigen (PSMA) has been identified as a target for the development of theranostic agents. In our current work, we describe the design and synthesis of novel N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-(S)-L-lysine (DCL) urea-based PSMA inhibitors with a chlorine-substituted aromatic fragment at the lysine ε-nitrogen atom, a dipeptide including two phenylalanine residues in the L-configuration as the peptide fragment of the linker, and 3- or 4-(tributylstannyl)benzoic acid as a prosthetic group in their structures for radiolabeling. The standard compounds [127I]PSMA-m-IB and [127I]PSMA-p-IB for comparative and characterization studies were first synthesized using two alternative synthetic approaches. An important advantage of the alternative synthetic approach, in which the prosthetic group (NHS-activated esters of compounds) is first conjugated with the polypeptide sequence followed by replacement of the Sn(Bu)3 group with radioiodine, is that the radionuclide is introduced in the final step of synthesis, thereby minimizing operating time with iodine-123 during the radiolabeling process. The obtained DCL urea-based PSMA inhibitors were radiolabeled with iodine-123. The radiolabeling optimization results showed that the radiochemical yield of [123I]PSMA-p-IB was higher than that of [123I]PSMA-m-IB, which were 74.9 ± 1.0% and 49.4 ± 1.2%, respectively. The radiochemical purity of [123I]PSMA-p-IB after purification was greater than 99.50%. The initial preclinical evaluation of [123I]PSMA-p-IB demonstrated a considerable affinity and specific binding to PC-3 PIP (PSMA-expressing cells) in vitro. The in vivo biodistribution of this new radioligand [123I]PSMA-p-IB showed less accumulation than [177Lu]Lu-PSMA-617 in several normal organs (liver, kidney, and bone). These results warrant further preclinical development, including toxicology evaluation and experiments in tumor-bearing mice.


Assuntos
Radioisótopos do Iodo , Neoplasias da Próstata , Humanos , Masculino , Animais , Camundongos , Ureia/farmacologia , Distribuição Tecidual , Neoplasias da Próstata/metabolismo , Glutamato Carboxipeptidase II/metabolismo , Antígenos de Superfície/metabolismo , Compostos Radiofarmacêuticos/química , Linhagem Celular Tumoral
4.
Cancers (Basel) ; 15(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37173878

RESUMO

ABY-027 is a scaffold-protein-based cancer-targeting agent. ABY-027 includes the second-generation Affibody molecule ZHER2:2891, which binds to human epidermal growth factor receptor type 2 (HER2). An engineered albumin-binding domain is fused to ZHER2:2891 to reduce renal uptake and increase bioavailability. The agent can be site-specifically labeled with a beta-emitting radionuclide 177Lu using a DOTA chelator. The goals of this study were to test the hypotheses that a targeted radionuclide therapy using [177Lu]Lu-ABY-027 could extend the survival of mice with HER2-expressing human xenografts and that co-treatment with [177Lu]Lu-ABY-027 and the HER2-targeting antibody trastuzumab could enhance this effect. Balb/C nu/nu mice bearing HER2-expressing SKOV-3 xenografts were used as in vivo models. A pre-injection of trastuzumab did not reduce the uptake of [177Lu]Lu-ABY-027 in tumors. Mice were treated with [177Lu]Lu-ABY-027 or trastuzumab as monotherapies and a combination of these therapies. Mice treated with vehicle or unlabeled ABY-027 were used as controls. Targeted monotherapy using [177Lu]Lu-ABY-027 improved the survival of mice and was more efficient than trastuzumab monotherapy. A combination of therapies utilizing [177Lu]Lu-ABY-027 and trastuzumab improved the treatment outcome in comparison with monotherapies using these agents. In conclusion, [177Lu]Lu-ABY-027 alone or in combination with trastuzumab could be a new potential agent for the treatment of HER2-expressing tumors.

5.
J Control Release ; 355: 515-527, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36773960

RESUMO

Treatment with antibody drug conjugates targeting receptors over-expressed on cancer cells is well established for clinical use in several types of cancer, however, resistance often occurs motivating the development of novel drugs. We have recently investigated a drug conjugate consisting of an affibody molecule targeting the human epidermal growth factor receptor 2 (HER2), fused to an albumin-binding domain (ABD) for half-life extension, loaded with the cytotoxic maytansine derivative DM1. In this study, we investigated the impact of the cytotoxic payload on binding properties, cytotoxicity and biodistribution by comparing DM1 with the auristatins MMAE and MMAF, as part of the drug conjugate. All constructs had specific and high affinity binding to HER2, human and mouse albumins with values in the low- to sub-nM range. ZHER2-ABD-mcMMAF demonstrated the most potent cytotoxic effect on several HER2-over-expressing cell lines. In an experimental therapy study, the MMAF-based conjugate provided complete tumor regression in 50% of BALB/c nu/nu mice bearing HER2-over-expressing SKOV3 tumors at a 2.9 mg/kg dose, while the same dose of ZHER2-ABD-mcDM1 provided only a moderate anti-tumor effect. A comparison with the non-targeting ZTaq-ABD-mcMMAF control demonstrated HER2-targeting specificity. In conclusion, a combination of potent cytotoxicity in vitro, with minimal uptake in normal organs in vivo, and efficient delivery to tumors provided a superior anti-tumor effect of ZHER2-ABD-mcMMAF, while maintaining a favorable toxicity profile with no observed adverse effects.


Assuntos
Antineoplásicos , Maitansina , Animais , Camundongos , Humanos , Preparações Farmacêuticas , Distribuição Tecidual , Linhagem Celular Tumoral , Receptor ErbB-2/metabolismo
6.
Oncol Lett ; 25(1): 12, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36478911

RESUMO

The upregulation of epithelial cell adhesion molecule (EpCAM) expression, found in a substantial fraction of renal cell carcinomas (RCCs), renders it a potential molecular target for the treatment of disseminated RCC. However, the heterogeneous expression of EpCAM necessitates first identifying the patients with sufficiently high expression of EpCAM in tumors. Using the specific radionuclide-based visualization of EpCAM might enable such identification. The designed ankyrin repeat protein, Ec1, is a small (molecular weight, 18 kDa) targeting protein with a subnanomolar affinity to EpCAM. Using a modified Ec1, a tracer was developed for the radionuclide-based visualization of EpCAM in vivo, i.e., an EpCAM-visualizing designed ankyrin repeat protein (EVD). EVD was labelled with either technetium-99m using technetium tricarbonyl or with iodine-125 (as a surrogate for iodine-123) by coupling it to para-[125I]iodobenzoyl ([125I]PIB) groups. Both the 125I-labelled EVD (125I-EVD) and 99mTc-labelled EVD (99mTc-EVD) bound specifically to EpCAM-expressing SK-RC-52 renal carcinoma cells. The binding affinity (KD value) of 99mTc-EVD to SK-RC-52 cells was 400±28 pM. The tracers' uptake in SK-RC-52 ×enografts at 3 h after injection was 5.2±1.4%ID/g for 125I-EVD and 6.0±1.4%ID/g for 99mTc-EVD (no significant difference). These uptake values in SK-RC-52 ×enografts were significantly higher (P<0.001) than those in Ramos lymphoma xenografts (used as EpCAM-negative control). The tumor-to-blood uptake ratio was significantly higher for 99mTc-EVD (25±6) compared with that of 125I-EVD (14±3). However, 125I-EVD was associated with higher tumor-to-liver, tumor-to-salivary gland, tumor-to-spleen and tumor-to-intestinal wall ratios. This makes it the preferable tracer for visualizing EpCAM expression levels in the frequently occurring abdominal metastases of RCC.

7.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499504

RESUMO

Non-invasive radionuclide molecular visualization of human epidermal growth factor receptor type 2 (HER2) can provide stratification of patients for HER2-targeting therapy. This method can also enable monitoring of the response to such therapies, thereby making treatment personalized and more efficient. Clinical evaluation in a phase I study demonstrated that injections of two scaffold protein-based imaging probes, [99mTc]Tc-(HE)3-G3 and [99mTc]Tc-ADAPT6, are safe, well-tolerated and cause a low level of radioactivity in healthy tissue. The goal of this preclinical study was to select the best probe for stratification of patients and response monitoring. Biodistribution of both tracers was compared in mice bearing SKOV-3 xenografts with high HER2 expression or MDA-MB-468 xenografts with very low expression. Changes in accumulation of the probes in SKOV-3 tumors 24 h after injection of trastuzumab were evaluated. Both [99mTc]Tc-ADAPT6 and [99mTc]Tc-(HE)3-G3 permitted high contrast imaging of HER2-expressing tumors and a clear discrimination between tumors with high and low HER2 expression. However, [99mTc]Tc-ADAPT6 has better preconditions for higher sensitivity and specificity of stratification. On the other hand, [99mTc]Tc-(HE)3-G3 is capable of detecting the decrease of HER2 expression on response to trastuzumab therapy only 24 h after injection of the loading dose. This indicates that the [99mTc]Tc-(HE)3-G3 tracer would be better for monitoring early response to such treatment. The results of this study should be considered in planning of further clinical development of HER2 imaging probes.


Assuntos
Neoplasias , Receptor ErbB-2 , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Neoplasias/patologia , Proteínas/metabolismo , Radioisótopos , Compostos Radiofarmacêuticos , Receptor ErbB-2/metabolismo , Distribuição Tecidual , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Ensaios Clínicos Fase I como Assunto
8.
Pharmaceutics ; 14(11)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36432709

RESUMO

Targeted molecular radiation therapy is a promising emerging treatment modality in oncology, and peptide synthesis may shorten the time to reach the clinical stage. In this study, we have explored Chemo-Enzymatic Peptide Synthesis, or CEPS, as a new means of producing a therapeutic HER2 targeted Affibody® molecule, comprising a C-terminal albumin binding domain (ABD) for half-life extension and a total length of 108 amino acids. In addition, a DOTA moiety could be incorporated at N-terminus directly during the synthesis step and subsequently utilized for site-specific radiolabeling with the therapeutic radionuclide 177Lu. Retained thermodynamic stability as well as retained binding to both HER2 and albumin was verified. Furthermore, HER2 binding specificity of the radiolabeled Affibody molecule was confirmed by an in vitro saturation assay showing a significantly higher cell-bound activity of SKOV-3 (high HER2 expression) compared with BxPC3 (low HER2 expression), both in the presence and absence of HSA. In vivo evaluation in mice bearing HER2 expressing xenografts also showed specific tumor targeting as well as extended time in circulation and reduced kidney uptake compared with a HER2 targeted Affibody molecule without the ABD moiety. To conclude, we have demonstrated that CEPS can be used for production of Affibody-fusion molecules with retained in vitro and in vivo functionality.

9.
Pharmaceutics ; 14(7)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35890370

RESUMO

The Insulin-like growth factor-1 receptor (IGF-1R) is a molecular target for several monoclonal antibodies undergoing clinical evaluation as anticancer therapeutics. The non-invasive detection of IGF-1R expression in tumors might enable stratification of patients for specific treatment and improve the outcome of both clinical trials and routine treatment. The affibody molecule ZIGF-1R:4551 binds specifically to IGF-1R with subnanomolar affinity. The goal of this study was to evaluate the 68Ga and 111In-labeled affibody construct NODAGA-(HE)3-ZIGF-1R:4551 for the imaging of IGF-1R expression, using PET and SPECT. The labeling was efficient and provided stable coupling of both radionuclides. The two imaging probes, [68Ga]Ga-NODAGA-(HE)3-ZIGF-1R:4551 and [111In]In-NODAGA-(HE)3-ZIGF-1R:4551, demonstrated specific binding to IGF-1R-expressing human cancer cell lines in vitro and to IGF-1R-expressing xenografts in mice. Preclinical PET and SPECT/CT imaging demonstrated visualization of IGF-1R-expressing xenografts already one hour after injection. The tumor-to-blood ratios at 3 h after injection were 7.8 ± 0.2 and 8.0 ± 0.6 for [68Ga]Ga-NODAGA-(HE)3-ZIGF-1R:4551 and [111In]In-NODAGA-(HE)3-ZIGF-1R:4551, respectively. In conclusion, a molecular design of the ZIGF-1R:4551 affibody molecule, including placement of a (HE)3-tag on the N-terminus and site-specific coupling of a NODAGA chelator on the C-terminus, provides a tracer with improved imaging properties for visualization of IGF-1R in malignant tumors, using PET and SPECT.

10.
Pharmaceutics ; 14(3)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35335898

RESUMO

Targeted drug conjugates based on Affibody molecules fused to an albumin-binding domain (ABD) for half-life extension have demonstrated potent anti-tumor activity in preclinical therapeutic studies. Furthermore, optimization of their molecular design might increase the cytotoxic effect on tumors and minimize systemic toxicity. This study aimed to investigate the influence of length and composition of a linker between the human epidermal growth factor receptor 2 (HER2)-targeted affibody molecule (ZHER2:2891) and the ABD domain on functionality and biodistribution of affibody-drug conjugates containing a microtubulin inhibitor mertansin (mcDM1) (AffiDCs). Two conjugates, having a trimeric (S3G)3 linker or a trimeric (G3S)3 linker were produced, radiolabeled with 99mTc(CO)3, and compared side-by-side in vitro and in vivo with the original ZHER2:2891-G4S-ABD-mcDM1 conjugate having a monomeric G4S linker. Both conjugates with longer linkers had a decreased affinity to HER2 and mouse and human serum albumin in vitro, however, no differences in blood retention were observed in NMRI mice up to 24 h post injection. The use of both (S3G)3 and (G3S)3 linkers reduced liver uptake of AffiDCs by approximately 1.2-fold compared with the use of a G4S linker. This finding provides important insights into the molecular design for the development of targeted drug conjugates with reduced hepatic uptake.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA