Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Anim Ecol ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778676

RESUMO

Interspecific interactions, including predator-prey, intraguild predation (IGP) and competition, may drive distribution and habitat use of predator communities. However, elucidating the relative importance of these interactions in shaping predator distributions is challenging, especially in marine communities comprising highly mobile species. We used individual-based models (IBMs) to predict the habitat distributions of apex predators, intraguild (IG) prey and prey. We then used passive acoustic telemetry to test these predictions in a subtropical marine predator community consisting of eight elasmobranch (i.e. shark and ray) species in Bimini, The Bahamas. IBMs predicted that prey and IG prey will preferentially select habitats based on safety over resources (food), with stronger selection for safe habitat by smaller prey. Elasmobranch space-use patterns matched these predictions. Species with predator-prey and asymmetrical IGP (between apex and small mesopredators) interactions showed the clearest spatial separation, followed by asymmetrical IGP among apex and large mesopredators. Competitors showed greater spatial overlap although with finer-scale differences in microhabitat use. Our study suggests space-use patterns in elasmobranchs are at least partially driven by interspecific interactions, with stronger spatial separation occurring where interactions include predator-prey relationships or IGP.

2.
R Soc Open Sci ; 11(3): 231783, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38455994

RESUMO

Biologging and habitat modelling are key tools supporting the development of conservation measures and mitigating the effects of anthropogenic pressures on marine species. Here, we analysed satellite telemetry data and foraging habitat preferences in relation to chlorophyll-a productivity fronts to understand the movements and behaviour of endangered Mediterranean fin whales (Balaenoptera physalus) during their spring-summer feeding aggregation in the North-Western Mediterranean Sea. Eleven individuals were equipped with Argos satellite transmitters across 3 years, with transmissions averaging 23.5 ± 11.3 days. Hidden Markov Models were used to identify foraging behaviour, revealing how individuals showed consistency in their use of seasonal core feeding grounds; this was supported by the distribution of potential foraging habitat. Importantly, tracked whales spent most of their time in areas with no explicit protected status within the study region. This highlights the need for enhanced time- and place-based conservation actions to mitigate the effects of anthropogenic impacts for this species, notably ship strike risk and noise disturbance in an area of exceptionally high maritime traffic levels. These findings strengthen the need to further assess critical habitats and Important Marine Mammal Areas that are crucial for focused conservation, management and mitigation efforts.

3.
Sci Total Environ ; 917: 170336, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38280594

RESUMO

Urbanization is an important driver of global change associated with a set of environmental modifications that affect the introduction and distribution of invasive non-native species (species with populations transported by humans beyond their natural biogeographic range that established and are spreading in their introduced range; hereafter, invasive species). These species are recognized as a cause of large ecological and economic losses. Nevertheless, the economic impacts of these species in urban areas are still poorly understood. Here we present a synthesis of the reported economic costs of invasive species in urban areas using the global InvaCost database, and demonstrate that costs are likely underestimated. Sixty-one invasive species have been reported to cause a cumulative cost of US$ 326.7 billion in urban areas between 1965 and 2021 globally (average annual cost of US$ 5.7 billion). Class Insecta was responsible for >99 % of reported costs (US$ 324.4 billion), followed by Aves (US$ 1.4 billion), and Magnoliopsida (US$ 494 million). The reported costs were highly uneven with the sum of the five costliest species representing 80 % of reported costs. Most reported costs were a result of damage (77.3 %), principally impacting public and social welfare (77.9 %) and authorities-stakeholders (20.7 %), and were almost entirely in terrestrial environments (99.9 %). We found costs reported for 24 countries. Yet, there are 73 additional countries with no reported costs, but with occurrences of invasive species that have reported costs in other countries. Although covering a relatively small area of the Earth's surface, urban areas represent about 15 % of the total reported costs attributed to invasive species. These results highlight the conservative nature of the estimates and impacts, revealing important biases present in the evaluation and publication of reported data on costs. We emphasize the urgent need for more focused assessments of invasive species' economic impacts in urban areas.


Assuntos
Insetos , Espécies Introduzidas , Humanos , Animais , Urbanização , Ecossistema
4.
Sci Total Environ ; 912: 169281, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38101642

RESUMO

Invasive non-native species are a growing burden to economies worldwide. While domesticated animals (i.e. livestock, beasts of burden or pets) have enabled our ways of life and provide sustenance for countless individuals, they may cause substantial impacts when they escape or are released (i.e. become feral) and then become invasive with impacts. We used the InvaCost database to evaluate monetary impacts from species in the Domestic Animal Diversity Information System database. We found a total cost of $141.95 billion from only 18 invasive feral species. Invasive feral livestock incurred the highest costs at $90.03 billion, with pets contributing $50.93 billion and beasts of burden having much lower costs at $0.98 billion. Agriculture was the most affected sector at $80.79 billion, followed by the Environment ($43.44 billion), and Authorities-Stakeholders sectors ($5.52 billion). Damage costs comprised the majority ($124.94 billion), with management and mixed damage-management costs making up the rest ($9.62 and $7.38 billion, respectively). These economic impacts were observed globally, where Oceania, North America and Europe were the most impacted regions. Islands recorded a higher economic burden than continental areas, with livestock species dominating costs more on islands than mainlands compared to other feral species. The costs of invasive feral animals were on average twice higher than those of wild species. The management of invasive feral populations requires higher investment, updated regulations, and comprehensive risk assessments. These are especially complex when considering the potential conflicts arising from interventions with species that have close ties to humans. Effective communication to raise public awareness of the impacts of feral populations and appropriate legislation to prevent or control such invasive feral populations will substantially contribute to minimizing their socioeconomic and environmental impacts.


Assuntos
Animais Selvagens , Espécies Introduzidas , Humanos , Animais , Agricultura , Animais Domésticos , América do Norte
5.
Bioscience ; 73(8): 560-574, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37680688

RESUMO

Biological invasions are a global challenge that has received insufficient attention. Recently available cost syntheses have provided policy- and decision makers with reliable and up-to-date information on the economic impacts of biological invasions, aiming to motivate effective management. The resultant InvaCost database is now publicly and freely accessible and enables rapid extraction of monetary cost information. This has facilitated knowledge sharing, developed a more integrated and multidisciplinary network of researchers, and forged multidisciplinary collaborations among diverse organizations and stakeholders. Over 50 scientific publications so far have used the database and have provided detailed assessments of invasion costs across geographic, taxonomic, and spatiotemporal scales. These studies have provided important information that can guide future policy and legislative decisions on the management of biological invasions while simultaneously attracting public and media attention. We provide an overview of the improved availability, reliability, standardization, and defragmentation of monetary costs; discuss how this has enhanced invasion science as a discipline; and outline directions for future development.

6.
Environ Sci Eur ; 35(1): 43, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325080

RESUMO

Background: Biological invasions threaten the functioning of ecosystems, biodiversity, and human well-being by degrading ecosystem services and eliciting massive economic costs. The European Union has historically been a hub for cultural development and global trade, and thus, has extensive opportunities for the introduction and spread of alien species. While reported costs of biological invasions to some member states have been recently assessed, ongoing knowledge gaps in taxonomic and spatio-temporal data suggest that these costs were considerably underestimated. Results: We used the latest available cost data in InvaCost (v4.1)-the most comprehensive database on the costs of biological invasions-to assess the magnitude of this underestimation within the European Union via projections of current and future invasion costs. We used macroeconomic scaling and temporal modelling approaches to project available cost information over gaps in taxa, space, and time, thereby producing a more complete estimate for the European Union economy. We identified that only 259 out of 13,331 (~ 1%) known invasive alien species have reported costs in the European Union. Using a conservative subset of highly reliable, observed, country-level cost entries from 49 species (totalling US$4.7 billion; 2017 value), combined with the establishment data of alien species within European Union member states, we projected unreported cost data for all member states. Conclusions: Our corrected estimate of observed costs was potentially 501% higher (US$28.0 billion) than currently recorded. Using future projections of current estimates, we also identified a substantial increase in costs and costly species (US$148.2 billion) by 2040. We urge that cost reporting be improved to clarify the economic impacts of greatest concern, concomitant with coordinated international action to prevent and mitigate the impacts of invasive alien species in the European Union and globally. Supplementary Information: The online version contains supplementary material available at 10.1186/s12302-023-00750-3.

7.
PeerJ ; 11: e14935, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36992943

RESUMO

Background: Rodents are among the most notorious invasive alien species worldwide. These invaders have substantially impacted native ecosystems, food production and storage, local infrastructures, human health and well-being. However, the lack of standardized and understandable estimation of their impacts is a serious barrier to raising societal awareness, and hampers effective management interventions at relevant scales. Methods: Here, we assessed the economic costs of invasive alien rodents globally in order to help overcome these obstacles. For this purpose, we combined and analysed economic cost data from the InvaCost database-the most up-to-date and comprehensive synthesis of reported invasion costs-and specific complementary searches within and beyond the published literature. Results: Our conservative analysis showed that reported costs of rodent invasions reached a conservative total of US$ 3.6 billion between 1930 and 2022 (annually US$ 87.5 million between 1980 and 2022), and were significantly increasing through time. The highest cost reported was for muskrat Ondatra zibethicus (US$ 377.5 million), then unspecified Rattus spp. (US$ 327.8 million), followed by Rattus norvegicus specifically (US$ 156.6 million) and Castor canadensis (US$ 150.4 million). Of the total costs, 87% were damage-related, principally impacting agriculture and predominantly reported in Asia (60%), Europe (19%) and North America (9%). Our study evidenced obvious cost underreporting with only 99 documents gathered globally, clear taxonomic gaps, reliability issues for cost assessment, and skewed breakdowns of costs among regions, sectors and contexts. As a consequence, these reported costs represent only a very small fraction of the expected true cost of rodent invasions (e.g., using a less conservative analytic approach would have led to a global amount more than 80-times higher than estimated here). Conclusions: These findings strongly suggest that available information represents a substantial underestimation of the global costs incurred. We offer recommendations for improving estimates of costs to fill these knowledge gaps including: systematic distinction between native and invasive rodents' impacts; monetizing indirect impacts on human health; and greater integrative and concerted research effort between scientists and stakeholders. Finally, we discuss why and how this approach will stimulate and provide support for proactive and sustainable management strategies in the context of alien rodent invasions, for which biosecurity measures should be amplified globally.


Assuntos
Ecossistema , Roedores , Humanos , Animais , Ratos , Reprodutibilidade dos Testes , Efeitos Psicossociais da Doença , Europa (Continente) , Espécies Introduzidas
8.
Rapid Commun Mass Spectrom ; 37(9): e9489, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36775809

RESUMO

RATIONALE: By combining precision satellite-tracking with blood sampling, seabirds can be used to validate marine carbon and nitrogen isoscapes, but it is unclear whether a comparable approach using low-precision light-level geolocators (GLS) and feather sampling can be similarly effective. METHODS: Here we used GLS to identify wintering areas of northern gannets (Morus bassanus) and sampled winter grown feathers (confirmed from image analysis of non-breeding birds) to test for spatial gradients in δ13 C and δ15 N in the NE Atlantic. RESULTS: By matching winter-grown feathers with the non-breeding location of tracked birds we found latitudinal gradients in δ13 C and δ15 N in neritic waters. Moreover, isotopic patterns were best explained by sea surface temperature. Similar isotope gradients were found in fish muscle sampled at local ports. CONCLUSIONS: Our study reveals the potential of using seabird GLS and feathers to reconstruct large-scale isotopic patterns.


Assuntos
Migração Animal , Aves , Animais , Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Temperatura , Migração Animal/fisiologia , Aves/fisiologia , Estações do Ano
9.
Conserv Biol ; 37(2): e14034, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36349474

RESUMO

Biological invasions represent a key threat to insular systems and have pronounced impacts across environments and economies. The ecological impacts have received substantial focus, but the socioeconomic impacts are poorly synthesized across spatial and temporal scales. We used the InvaCost database, the most comprehensive assessment of published economic costs of invasive species, to assess economic impacts on islands worldwide. We analyzed socioeconomic costs across differing expenditure types and examined temporal trends across islands that differ in their political geography-island nation states, overseas territories, and islands of continental countries. Over US$36 billion in total costs (including damages and management) has occurred on islands from 1965 to 2020 due to invasive species' impacts. Nation states incurred the greatest total and management costs, and islands of continental countries incurred costs of similar magnitude, both far higher than those in overseas territories. Damage-loss costs were significantly lower, but with qualitatively similar patterns across differing political geographies. The predominance of management spending differs from the pattern found for most countries examined and suggests important knowledge gaps in the extent of many damage-related socioeconomic impacts. Nation states spent the greatest proportion of their gross domestic products countering these costs, at least 1 order of magnitude higher than other locations. Most costs were borne by authorities and stakeholders, demonstrating the key role of governmental and nongovernmental bodies in addressing island invasions. Temporal trends revealed cost increases across all island types, potentially reflecting efforts to tackle invasive species at larger, more socially complex scales. Nevertheless, the already high total economic costs of island invasions substantiate the role of biosecurity in reducing and preventing invasive species arrivals to reduce strains on limited financial resources and avoid threats to sustainable development goals.


Costos económicos de proteger a las islas de las especies invasoras Resumen Las invasiones biológicas representan una amenaza importante para los sistemas insulares, además de tener impactos pronunciados en el ambiente y en la economía. Los impactos ecológicos han recibido atención sustancial, mientras que los impactos socioeconómicos se encuentran pobremente sintetizados en las escalas temporales y espaciales. Usamos la base de datos InvaCost, el análisis más completo de los costos económicos de las especies invasoras, para evaluar los impactos económicos sobre las islas a nivel mundial. Analizamos los costos socioeconómicos en varios tipos de gastos y examinamos las tendencias temporales en las islas que difieren en su geografía política - islas estado-nación, territorios ultramarinos e islas de países continentales. En las islas han ocurrido gastos de más de $36 mil millones de dólares entre 1965 y 2020 debido a los impactos de las especies invasoras. Las islas estado-nación produjeron los mayores costos de manejo y el mayor total, mientras que las islas de los países continentales produjeron costos de una magnitud similar, ambas con gastos mucho más elevados que los de los territorios ultramarinos. Los costos de las pérdidas por daños fueron significativamente más bajas, aunque con patrones cualitativamente similares entre las diferentes geografías políticas. El predominio del gasto en el manejo difiere del patrón hallado en la mayoría de los países analizados y sugiere que hay vacíos importantes en el conocimiento del alcance de muchos de los impactos socioeconómicos relacionados con los daños. Las islas estado-nación gastaron la mayor proporción de su producto interno bruto en contrarrestar estos costos, al menos una orden de magnitud mayor que las otras localidades. La mayoría de los costos fueron asumidos por las autoridades y los accionistas, lo que demuestra el papel clave que tienen los organismos gubernamentales y no gubernamentales en cómo se atienden las invasiones insulares. Las tendencias temporales revelaron incrementos en el costo en todos los tipos de islas, lo que potencialmente refleja los esfuerzos por combatir a las especies invasoras a escalas más grandes y socialmente más complejas. Aun así, el elevado costo económico total de las invasiones insulares fundamenta la función que tiene la bioseguridad en la reducción y prevención de la llegada de especies invasoras para reducir presiones sobre los recursos financieros limitados y evitar amenazas para las metas de desarrollo sustentable.


Assuntos
Conservação dos Recursos Naturais , Espécies Introduzidas , Geografia , Ecossistema
10.
PeerJ ; 10: e13580, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990909

RESUMO

Biological invasions are a major component of anthropogenic environmental change, incurring substantial economic costs across all sectors of society and ecosystems. There have been recent syntheses of costs for a number of countries using the newly compiled InvaCost database, but New Zealand-a country renowned for its approach to invasive species management-has so far not been examined. Here we analyse reported economic damage and management costs incurred by biological invasions in New Zealand from 1968 to 2020. In total, US$69 billion (NZ$97 billion) is currently reported over this ∼50-year period, with approximately US$9 billion of this considered highly reliable, observed (c.f. projected) costs. Most (82%) of these observed economic costs are associated with damage, with comparatively little invested in management (18%). Reported costs are increasing over time, with damage averaging US$120 million per year and exceeding management expenditure in all decades. Where specified, most reported costs are from terrestrial plants and animals, with damages principally borne by primary industries such as agriculture and forestry. Management costs are more often associated with interventions by authorities and stakeholders. Relative to other countries present in the InvaCost database, New Zealand was found to spend considerably more than expected from its Gross Domestic Product on pre- and post-invasion management costs. However, some known ecologically (c.f. economically) impactful invasive species are notably absent from estimated damage costs, and management costs are not reported for a number of game animals and agricultural pathogens. Given these gaps for known and potentially damaging invaders, we urge improved cost reporting at the national scale, including improving public accessibility through increased access and digitisation of records, particularly in overlooked socioeconomic sectors and habitats. This also further highlights the importance of investment in management to curtail future damages across all sectors.


Assuntos
Ecossistema , Espécies Introduzidas , Animais , Nova Zelândia , Gastos em Saúde , Plantas
11.
Sci Total Environ ; 819: 153404, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35148893

RESUMO

The global increase in biological invasions is placing growing pressure on the management of ecological and economic systems. However, the effectiveness of current management expenditure is difficult to assess due to a lack of standardised measurement across spatial, taxonomic and temporal scales. Furthermore, there is no quantification of the spending difference between pre-invasion (e.g. prevention) and post-invasion (e.g. control) stages, although preventative measures are considered to be the most cost-effective. Here, we use a comprehensive database of invasive alien species economic costs (InvaCost) to synthesise and model the global management costs of biological invasions, in order to provide a better understanding of the stage at which these expenditures occur. Since 1960, reported management expenditures have totalled at least US$95.3 billion (in 2017 values), considering only highly reliable and actually observed costs - 12-times less than damage costs from invasions ($1130.6 billion). Pre-invasion management spending ($2.8 billion) was over 25-times lower than post-invasion expenditure ($72.7 billion). Management costs were heavily geographically skewed towards North America (54%) and Oceania (30%). The largest shares of expenditures were directed towards invasive alien invertebrates in terrestrial environments. Spending on invasive alien species management has grown by two orders of magnitude since 1960, reaching an estimated $4.2 billion per year globally (in 2017 values) in the 2010s, but remains 1-2 orders of magnitude lower than damages. National management spending increased with incurred damage costs, with management actions delayed on average by 11 years globally following damage reporting. These management delays on the global level have caused an additional invasion cost of approximately $1.2 trillion, compared to scenarios with immediate management. Our results indicate insufficient management - particularly pre-invasion - and urge better investment to prevent future invasions and to control established alien species. Recommendations to improve reported management cost comprehensiveness, resolution and terminology are also made.


Assuntos
Ecossistema , Espécies Introduzidas , Animais , Invertebrados , América do Norte
12.
Glob Chang Biol ; 27(7): 1443-1456, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33368863

RESUMO

Achieving conservation objectives is time critical, but the vast number of threats and potential actions means some form of ranking is necessary to aid prioritization. Objective methods for ranking conservation actions based on when they are differentially likely to become feasible, or to succeed, are currently unavailable within existing decision-making frameworks but are critical for making informed management decisions. We demonstrate how statistical tools developed for survival (or time-to-event) analysis can be used to rank conservation actions over time, through the lens of invasive mammal eradications on islands. Here we forecast the probability of eradicating commensal rat species (Rattus rattus, R. norvegicus, R. exulans) from the New Zealand archipelago by the government's stated target of year 2050. Our methods provide temporally ranked eradication trajectories for the entire country, thus facilitating meeting nationwide policy goals. This demonstration highlights the relevance and applicability of such an approach and its utility for prioritizing globally effective conservation actions.


Assuntos
Conservação dos Recursos Naturais , Espécies Introduzidas , Animais , Ilhas , Mamíferos , Nova Zelândia , Ratos
13.
Trends Ecol Evol ; 35(11): 990-1000, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32900547

RESUMO

Managing vertebrate pests is a global conservation challenge given their undesirable socio-ecological impacts. Pest management often focuses on the 'average' individual, neglecting individual-level behavioural variation ('personalities') and differences in life histories. These differences affect pest impacts and modify attraction to, or avoidance of, sensory cues. Strategies targeting the average individual may fail to mitigate damage by 'rogues' (individuals causing disproportionate impact) or to target 'recalcitrants' (individuals avoiding standard control measures). Effective management leverages animal behaviours that relate primarily to four core motivations: feeding, fleeing, fighting, and fornication. Management success could be greatly increased by identifying and exploiting individual variation in motivations. We provide explicit suggestions for cue-based tools to manipulate these four motivators, thereby improving pest management outcomes.


Assuntos
Sinais (Psicologia) , Motivação , Animais , Personalidade , Controle de Pragas , Vertebrados
14.
Proc Biol Sci ; 287(1932): 20201063, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32783522

RESUMO

Animals across vertebrate taxa form social communities and often exist as fission-fusion groups. Central place foragers (CPF) may form groups from which they will predictably disperse to forage, either individually or in smaller groups, before returning to fuse with the larger group. However, the function and stability of social associations in predatory fish acting as CPFs is unknown, as individuals do not need to return to a shelter yet show fidelity to core areas. Using dynamic social networks generated from acoustic tracking data, we document spatially structured sociality in CPF grey reef sharks at a Pacific Ocean atoll. We show that sharks form stable social groups over multiyear periods, with some dyadic associations consistent for up to 4 years. Groups primarily formed during the day, increasing in size throughout the morning before sharks dispersed from the reef at night. Our simulations suggest that multiple individuals sharing a central place and using social information while foraging (i.e. local enhancement) will outperform non-CPF social foragers. We show multiyear social stability in sharks and suggest that social foraging with information transfer could provide a generalizable mechanism for the emergence of sociality with group central place foraging.


Assuntos
Tubarões/fisiologia , Comportamento Social , Acústica , Animais , Recifes de Corais , Ecossistema , Oceano Pacífico
15.
J Anim Ecol ; 89(8): 1872-1882, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32277838

RESUMO

Physiological processes, including those that disrupt oxidative balance, have been proposed as key to understanding fundamental life-history trade-offs. Yet, examination of changes in oxidative balance within wild animals across time, space and major life-history challenges remains uncommon. For example, migration presents substantial physiological challenges for individuals, and data on migratory individuals would provide crucial context for exposing the importance of relationships between oxidative balance and fitness outcomes. Here we examined the consistency of commonly used measures of oxidative balance in longitudinally sampled free-living individuals of a long-lived, long-distance migrant, the Brent goose Branta bernicla hrota over periods of months to years. Although inter-individual and temporal variation in measures of oxidative balance were substantial, we found high consistency in measures of lipid peroxidation and circulating non-enzymatic antioxidants in longitudinally sampled individuals. This suggests the potential for the existence of individual oxidative phenotypes. Given intra-individual consistency, we then examined how these physiological measures relate to survival and reproductive success across all sampled individuals. Surprisingly, lower survival was predicted for individuals with lower levels of damage, with no measured physiological metric associated with reproductive success. Our results demonstrate that snapshot measurements of a consistent measure of oxidative balance can inform our understanding of differences in a key demographic trait. However, the positive relationship between oxidative damage and survival emphasises the need to investigate the relationships between the oxidative system and fitness outcomes in other species undergoing similar physiologically challenging life cycles. This would highlight the extent to which variation in such traits and resource allocation trade-offs is a result of adaptation to different life-history strategies.


Assuntos
Características de História de Vida , Reprodução , Adaptação Fisiológica , Animais , Estágios do Ciclo de Vida , Estresse Oxidativo
16.
Biol Lett ; 15(1): 20180750, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30958216

RESUMO

Oxidative stress is a likely consequence of hard physical exertion and thus a potential mediator of life-history trade-offs in migratory animals. However, little is known about the relative importance of intrinsic and extrinsic stressors on the oxidative state of individuals in wild populations. We quantified the relationships between air temperature, sex, body condition and three markers of oxidative state (malondialdehyde, superoxide dismutase and total antioxidant capacity) across hundreds of individuals of a long-distance migrant (the brent goose Branta bernicla hrota) during wintering and spring staging. We found that air temperature and migratory stage were the strongest predictors of oxidative state. This emphasizes the importance of extrinsic factors in regulating the oxidative state of migrating birds, with differential effects across the migration. The significance of abiotic effects demonstrates an additional mechanism by which changing climates may affect migratory costs.


Assuntos
Migração Animal , Aves , Animais , Clima , Estresse Oxidativo , Estações do Ano
17.
Ecol Evol ; 8(1): 13-24, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321847

RESUMO

Search behavior is often used as a proxy for foraging effort within studies of animal movement, despite it being only one part of the foraging process, which also includes prey capture. While methods for validating prey capture exist, many studies rely solely on behavioral annotation of animal movement data to identify search and infer prey capture attempts. However, the degree to which search correlates with prey capture is largely untested. This study applied seven behavioral annotation methods to identify search behavior from GPS tracks of northern gannets (Morus bassanus), and compared outputs to the occurrence of dives recorded by simultaneously deployed time-depth recorders. We tested how behavioral annotation methods vary in their ability to identify search behavior leading to dive events. There was considerable variation in the number of dives occurring within search areas across methods. Hidden Markov models proved to be the most successful, with 81% of all dives occurring within areas identified as search. k-Means clustering and first passage time had the highest rates of dives occurring outside identified search behavior. First passage time and hidden Markov models had the lowest rates of false positives, identifying fewer search areas with no dives. All behavioral annotation methods had advantages and drawbacks in terms of the complexity of analysis and ability to reflect prey capture events while minimizing the number of false positives and false negatives. We used these results, with consideration of analytical difficulty, to provide advice on the most appropriate methods for use where prey capture behavior is not available. This study highlights a need to critically assess and carefully choose a behavioral annotation method suitable for the research question being addressed, or resulting species management frameworks established.

18.
Proc Biol Sci ; 284(1859)2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747480

RESUMO

Individual foraging specializations, where individuals use a small component of the population niche width, are widespread in nature with important ecological and evolutionary implications. In long-lived animals, foraging ability develops with age, but we know little about the ontogeny of individuality in foraging. Here we use precision global positioning system (GPS) loggers to examine how individual foraging site fidelity (IFSF), a common component of foraging specialization, varies between breeders, failed breeders and immatures in a long-lived marine predator-the northern gannet Morus bassanus Breeders (aged 5+) showed strong IFSF: they had similar routes and were faithful to distal points during successive trips. However, centrally placed immatures (aged 2-3) were far more exploratory and lacked route or foraging site fidelity. Failed breeders were intermediate: some with strong fidelity, others being more exploratory. Individual foraging specializations were previously thought to arise as a function of heritable phenotypic differences or via social transmission. Our results instead suggest a third alternative-in long-lived species foraging sites are learned during exploratory behaviours early in life, which become canalized with age and experience, and refined where possible-the exploration-refinement foraging hypothesis. We speculate similar patterns may be present in other long-lived species and moreover that long periods of immaturity may be a consequence of such memory-based individual foraging strategies.


Assuntos
Fatores Etários , Comportamento Apetitivo , Aves/fisiologia , Reprodução , Animais , Ecologia , Comportamento Alimentar , Sistemas de Informação Geográfica
19.
J Anim Ecol ; 86(2): 285-295, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27973683

RESUMO

The manner in which patterns of variation and interactions among demographic rates contribute to population growth rate (λ) is key to understanding how animal populations will respond to changing climatic conditions. Migratory species are likely to be particularly sensitive to climatic conditions as they experience a range of different environments throughout their annual cycle. However, few studies have provided fully integrated demographic analyses of migratory populations in response to changing climatic conditions. Here, we employed integrated population models to demonstrate that the environmental conditions experienced during a short but critical period play a central role in the demography of a long-distance migrant, the light-bellied Brent goose (Branta bernicla hrota). Female survival was positively associated with June North Atlantic Oscillation (NAO) values, whereas male survival was not. In contrast, breeding productivity was negatively associated with June NAO, suggesting a trade-off between female survival and reproductive success. Both adult female and adult male survival showed low temporal variation, whereas there was high temporal variation in recruitment and breeding productivity. In addition, while annual population growth was positively correlated with annual breeding productivity, a sensitivity analysis revealed that population growth was most sensitive to changes in adult survival. Our results demonstrate that the environmental conditions experienced during a relatively short-time window at the start of the breeding season play a critical role in shaping the demography of a long-distant Arctic migrant. Crucially, different demographic rates responded in opposing directions to climatic variation, emphasising the need for integrated analysis of multiple demographic traits when understanding population dynamics.


Assuntos
Migração Animal , Gansos/fisiologia , Longevidade , Reprodução , Animais , Canadá , Meio Ambiente , Feminino , Masculino , Modelos Biológicos , Dinâmica Populacional
20.
Ecology ; 96(11): 3058-74, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27070024

RESUMO

Many established models of animal foraging assume that individuals are ecologically equivalent. However, it is increasingly recognized that populations may comprise individuals who differ consistently in their diets and foraging behaviors. For example, recent studies have shown that individual foraging site fidelity (IFSF, when individuals consistently forage in only a small part of their population's home range) occurs in some colonial breeders. Short-term IFSF could result from animals using a win-stay, lose-shift foraging strategy. Alternatively, it may be a consequence of individual specialization. Pelagic seabirds are colonial central-place foragers, classically assumed to use flexible foraging strategies to target widely dispersed, spatiotemporally patchy prey. However, tracking has shown that IFSF occurs in many seabirds, although it is not known whether this persists across years. To test for long-term IFSF and to examine alternative hypotheses concerning its cause, we repeatedly tracked 55 Northern Gannets (Morus bassanus) from a large colony in the North Sea within and across three successive breeding seasons. Gannets foraged in neritic waters, predictably structured by tidal mixing and thermal stratification, but subject to stochastic, wind-induced overturning. Both within and across years, coarse to mesoscale (tens of kilometers) IFSF was significant but not absolute, and foraging birds departed the colony in individually consistent directions. Carbon stable isotope ratios in gannet blood tissues were repeatable within years and nitrogen ratios were also repeatable across years, suggesting long-term individual dietary specialization. Individuals were also consistent across years in habitat use with respect to relative sea surface temperature and in some dive metrics, yet none of these factors accounted for IFSF. Moreover, at the scale of weeks, IFSF did not decay over time and the magnitude of IFSF across years was similar to that within years, suggesting that IFSF is not primarily the result of win-stay, lose-shift foraging. Rather, we hypothesize that site familiarity, accrued early in-life, causes IFSF by canalizing subsequent foraging decisions. Evidence from this and other studies suggests that IFSF may be common in colonial central-place foragers, with far-reaching consequences for our attempts to understand and conserve these animals in a rapidly changing environment.


Assuntos
Aves/fisiologia , Comportamento Alimentar/fisiologia , Distribuição Animal , Animais , Composição Corporal , Ecossistema , Isótopos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA