Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 361(6401): 479-481, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-30072535

RESUMO

The anomalous metallic state in the high-temperature superconducting cuprates is masked by superconductivity near a quantum critical point. Applying high magnetic fields to suppress superconductivity has enabled detailed studies of the normal state, yet the direct effect of strong magnetic fields on the metallic state is poorly understood. We report the high-field magnetoresistance of thin-film La2-x Sr x CuO4 cuprate in the vicinity of the critical doping, 0.161 ≤ p ≤ 0.190. We find that the metallic state exposed by suppressing superconductivity is characterized by magnetoresistance that is linear in magnetic fields up to 80 tesla. The magnitude of the linear-in-field resistivity mirrors the magnitude and doping evolution of the well-known linear-in-temperature resistivity that has been associated with quantum criticality in high-temperature superconductors.

2.
Nat Mater ; 12(10): 877-81, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23913171

RESUMO

The recent discovery of superconductivity at the interface of two non-superconducting materials has received much attention. In cuprate bilayers, the critical temperature (Tc) can be significantly enhanced compared with single-phase samples. Several explanations have been proposed, invoking Sr interdiffusion, accumulation and depletion of mobile charge carriers, elongation of the copper-to-apical-oxygen bond length, or a beneficial crosstalk between a material with a high pairing energy and another with a large phase stiffness. From each of these models, one would predict Tc to depend strongly on the carrier density in the constituent materials. Here, we study combinatorial libraries of La(2-x)Sr(x)CuO4-La2CuO4 bilayer samples--an unprecedentedly large set of more than 800 different compositions. The doping level x spans a wide range, 0.15 < x < 0.47, and the measured Hall coefficient varies by one order of magnitude. Nevertheless, across the entire sample set, Tc stays essentially constant at about 40 K. We infer that doping up to the optimum level does not shift the chemical potential, unlike in ordinary Fermi liquids. This result poses a new challenge to theory--cuprate superconductors have not run out of surprises.

3.
Science ; 327(5962): 181-4, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-20056885

RESUMO

The mechanism of high-temperature superconductivity in the newly discovered iron-based superconductors is unresolved. We use spectroscopic imaging-scanning tunneling microscopy to study the electronic structure of a representative compound CaFe1.94Co0.06As2 in the "parent" state from which this superconductivity emerges. Static, unidirectional electronic nanostructures of dimension eight times the inter-iron-atom distance a(Fe-Fe) and aligned along the crystal a axis are observed. In contrast, the delocalized electronic states detectable by quasiparticle interference imaging are dispersive along the b axis only and are consistent with a nematic alpha2 band with an apparent band folding having wave vector q vector congruent with +/-2pi/8a(Fe-Fe) along the a axis. All these effects rotate through 90 degrees at orthorhombic twin boundaries, indicating that they are bulk properties. As none of these phenomena are expected merely due to crystal symmetry, underdoped ferropnictides may exhibit a more complex electronic nematic state than originally expected.

4.
Phys Rev Lett ; 102(1): 017004, 2009 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-19257230

RESUMO

A 60 T magnetic field suppresses the superconducting transition temperature T_{c} in La_{2-p}Sr_{p}CuO_{4} to reveal a Hall number anomaly, which develops only at temperatures below zero-field T_{c} and peaks at the exact location of p that maximizes T_{c}. The anomaly bears a striking resemblance to observations in Bi_{2}Sr_{2-x}La_{x}CuO_{6+delta}, suggesting a normal-state phenomenology common to the cuprates that underlies the high-temperature superconducting phase. The peak is ascribed to a Fermi surface reconstruction at a quantum phase transition near optimum doping that is coincident with the collapse of the pseudogap state.

5.
J Phys Condens Matter ; 21(41): 412201, 2009 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21693981

RESUMO

We report the Hall resistivity, ρ(xy), of polycrystalline SmFeAsO(1-x)F(x) for four different fluorine concentrations from the onset of superconductivity through the collapse of the structural phase transition. For the two more highly doped samples, ρ(xy) is linear in magnetic field up to 50 T with only weak temperature dependence, reminiscent of a simple Fermi liquid. For the lightly doped samples with x<0.15, we find a low temperature regime characterized as ρ(xy)(H) being both nonlinear in magnetic field and strongly temperature-dependent even though the Hall angle is small. The onset temperature for this nonlinear regime is in the vicinity of the structural phase (SPT)/magnetic ordering (MO) transitions. The temperature dependence of the Hall resistivity is consistent with a thermal activation of carriers across an energy gap. The evolution of the energy gap with doping is reported.

6.
Science ; 315(5817): 1379, 2007 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-17303717

RESUMO

The quantum Hall effect (QHE), one example of a quantum phenomenon that occurs on a truly macroscopic scale, has attracted intense interest since its discovery in 1980 and has helped elucidate many important aspects of quantum physics. It has also led to the establishment of a new metrological standard, the resistance quantum. Disappointingly, however, the QHE has been observed only at liquid-helium temperatures. We show that in graphene, in a single atomic layer of carbon, the QHE can be measured reliably even at room temperature, which makes possible QHE resistance standards becoming available to a broader community, outside a few national institutions.

7.
Phys Rev Lett ; 94(8): 086402, 2005 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-15783911

RESUMO

We have studied the temperature dependent phonon emission rate P(T) of a strongly interacting (r(s) > or =22) dilute 2D GaAs hole system using a standard carrier heating technique. In the still poorly understood metallic state, we observe that P(T) changes from P(T) approximately T5 to P(T) approximately T7 above 100 mK, indicating a crossover from screened piezoelectric (PZ) coupling to screened deformation potential (DP) coupling for hole-phonon scattering. Quantitative comparison with theory shows that the long range PZ coupling between holes and phonons has the expected magnitude; however, in the metallic state, the short range DP coupling between holes and phonons is almost 20 times stronger than expected from theory. The density dependence of P(T) shows that it is easier to cool low-density 2D holes in GaAs than higher density 2D hole systems.

8.
Phys Rev Lett ; 92(24): 247004, 2004 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-15245125

RESUMO

To elucidate a quantum phase transition (QPT) in Bi(2)Sr(2-x)La(x)CuO(6+delta), we measure charge and heat transport properties at very low temperatures and examine the following characteristics for a wide range of doping: normal-state resistivity anisotropy under 58 T, temperature dependence of the in-plane thermal conductivity kappa(ab), and the magnetic-field dependence of kappa(ab). It turns out that all of them show signatures of a QPT at the 1/8 hole doping. Together with the recent normal-state Hall measurements under 58 T that signified the existence of a QPT at optimum doping, the present results indicate that there are two QPTs in the superconducting doping regime of this material.

9.
Phys Rev Lett ; 93(25): 256402, 2004 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-15697919

RESUMO

We report the temperature (T) and perpendicular magnetic-field (B) dependence of the Hall resistivity rho(xy)(B) of dilute metallic 2D holes in GaAs over a broad range of temperature (0.02-1.25 K). The low B Hall coefficient, R(H), is found to be enhanced when T decreases. Strong magnetic fields further enhance the slope of rho(xy)(B) at all temperatures studied. Coulomb interaction corrections of a Fermi liquid (FL) in the ballistic regime can not explain the enhancement of rho(xy) which occurs in the same regime as the anomalous metallic longitudinal conductivity. In particular, although the metallic conductivity in 2D systems has been attributed to electron interactions in a FL, these same interactions should reduce, not enhance, the slope of rho(xy)(B) as T decreases and/or B increases.

10.
Phys Rev Lett ; 91(25): 256401, 2003 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-14754130

RESUMO

A comprehensive transport study, as a function of temperature and continuous magnetic fields of up to 45 T, reveals that URu2Si2 possesses all the essential hallmarks of quantum criticality at fields around 37+/-1 T. The formation of multiple phases at low temperatures at and around the quantum critical point suggests the existence of competing order parameters.

11.
Nature ; 417(6887): 421-4, 2002 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-12024208

RESUMO

Magnetic fields change the way that electrons move through solids. The nature of these changes reveals information about the electronic structure of a material and, in auspicious circumstances, can be harnessed for applications. The silver chalcogenides, Ag2Se and Ag2Te, are non-magnetic materials, but their electrical resistance can be made very sensitive to magnetic field by adding small amounts--just 1 part in 10,000--of excess silver. Here we show that the resistance of Ag2Se displays a large, nearly linear increase with applied magnetic field without saturation to the highest fields available, 600,000 gauss, more than a million times the Earth's magnetic field. These characteristics of large (thousands of per cent) and near-linear response over a large field range make the silver chalcogenides attractive as magnetic-field sensors, especially in physically tiny megagauss (10(6) G) pulsed magnets where large fields have been produced but accurate calibration has proved elusive. High-field studies at low temperatures reveal both oscillations in the magnetoresistance and a universal scaling form that point to a quantum origin for this material's unprecedented behaviour.

12.
Phys Rev Lett ; 85(3): 638-41, 2000 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-10991359

RESUMO

We measure the normal-state in-plane resistivity of Bi(2)Sr(2-x)La(x)CuO(6+delta) single crystals at low temperatures by suppressing superconductivity with 60 T pulsed magnetic fields. With decreasing hole doping, we observe a crossover from a metallic to an insulating behavior in the low-temperature normal state. This crossover is estimated to occur near 1/8 doping, well inside the underdoped regime, and not at optimum doping as reported for other cuprates. The insulating regime is marked by a logarithmic temperature dependence of the resistivity over two decades of temperature, suggesting that a peculiar charge localization is common to the cuprates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA