Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Curr Biol ; 34(8): 1794-1800.e3, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38552627

RESUMO

Extant baleen whales (Mysticeti) uniquely use keratinous baleen for filter-feeding and lack dentition, but the fossil record clearly shows that "toothed" baleen whales first appeared in the Late Eocene.1 Globally, only two Eocene mysticetes have been found, and both are from the Southern Hemisphere: Mystacodon selenensis from Peru, 36.4 mega-annum (Ma) ago1,2 and Llanocetus denticrenatus from Antarctica, 34.2 Ma ago.3,4 Based on a partial skull from the lower part of the Lincoln Creek Formation in Washington State, USA, we describe the Northern Hemisphere's geochronologically earliest mysticete, Fucaia humilis sp. nov. Geology, biostratigraphy, and magnetostratigraphy places Fucaia humilis sp. nov. in the latest Eocene (ca. 34.5 Ma ago, near the Eocene/Oligocene transition at 33.9 Ma ago), approximately coeval with the oldest record of fossil kelps, also in the northeastern Pacific.5 This observation leads to our hypothesis that the origin and development of a relatively stable, nutrient-rich kelp ecosystem5,6 in the latest Eocene may have fostered the radiation of small-sized toothed mysticetes (Family Aetiocetidae) in the North Pacific basin, a stark contrast to the larger Llanocetidae (whether Mystacodon belongs to llanocetids or another independent clade remains unresolved) with the latest Eocene onset of the Antarctic Circumpolar Current in the Southern Hemisphere.7,8,9 Our discovery suggests that disparate mechanisms and ecological scenarios may have nurtured contrasting early mysticete evolutionary histories in the Northern and Southern hemispheres.


Assuntos
Fósseis , Baleias , Fósseis/anatomia & histologia , Animais , Baleias/anatomia & histologia , Baleias/fisiologia , Evolução Biológica , Crânio/anatomia & histologia , Washington
3.
Curr Biol ; 34(2): 273-285.e3, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38118449

RESUMO

Toothed whales (odontocetes) emit high-frequency underwater sounds (echolocate)-an extreme and unique innovation allowing them to sense their prey and environment. Their highly specialized mandible (lower jaw) allows high-frequency sounds to be transmitted back to the inner ear. Echolocation is evident in the earliest toothed whales, but little research has focused on the evolution of mandibular form regarding this unique adaptation. Here, we use a high-density, three-dimensional geometric morphometric analysis of 100 living and extinct cetacean species spanning their ∼50-million-year evolutionary history. Our analyses demonstrate that most shape variation is found in the relative length of the jaw and the mandibular symphysis. The greatest morphological diversity was obtained during two periods of rapid evolution: the initial evolution of archaeocetes (stem whales) in the early to mid-Eocene as they adapted to an aquatic lifestyle, representing one of the most extreme adaptive transitions known, and later on in the mid-Oligocene odontocetes as they became increasingly specialized for a range of diets facilitated by increasingly refined echolocation. Low disparity in the posterior mandible suggests the shape of the acoustic window, which receives sound, has remained conservative since the advent of directional hearing in the aquatic archaeocetes, even as the earliest odontocetes began to receive sounds from echolocation. Diet, echolocation, feeding method, and dentition type strongly influence mandible shape. Unlike in the toothed whale cranium, we found no significant asymmetry in the mandible. We suggest that a combination of refined echolocation and associated dietary specializations have driven morphology and disparity in the toothed whale mandible.


Assuntos
Evolução Biológica , Ecolocação , Animais , Baleias/anatomia & histologia , Audição , Som , Crânio/anatomia & histologia
4.
Proc Biol Sci ; 288(1957): 20211368, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34428967

RESUMO

Over about 10 million years, the ancestors of whales transformed from herbivorous, deer-like, terrestrial mammals into carnivorous and fully aquatic cetaceans. Protocetids are Eocene whales that represent a unique semiaquatic stage in that dramatic evolutionary transformation. Here, we report on a new medium-sized protocetid, Phiomicetus anubis gen. et sp. nov., consisting of a partial skeleton from the middle Eocene (Lutetian) of the Fayum Depression in Egypt. The new species differs from other protocetids in having large, elongated temporal fossae, anteriorly placed pterygoids, elongated parietals, an unfused mandibular symphysis that terminates at the level of P3, and a relatively enlarged I3. Unique features of the skull and mandible suggest a capacity for more efficient oral mechanical processing than the typical protocetid condition, thereby allowing for a strong raptorial feeding style. Phylogenetic analysis nests Phiomicetus within the paraphyletic Protocetidae, as the most basal protocetid known from Africa. Recovery of Phiomicetus from the same bed that yielded the remingtonocetid Rayanistes afer provides the first clear evidence for the co-occurrence of the basal cetacean families Remingtonocetidae and Protocetidae in Africa. The discovery of Phiomicetus further augments our understanding of the biogeography and feeding ecology of early whales.


Assuntos
Cervos , Baleias , Animais , Evolução Biológica , Fósseis , Filogenia , Crânio/anatomia & histologia
5.
Curr Biol ; 30(16): 3267-3273.e2, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32649912

RESUMO

Modern whales and dolphins are superbly adapted for marine life, with tail flukes being a key innovation shared by all extant species. Some dolphins can exceed speeds of 50 km/h, a feat accomplished by thrusting the flukes while adjusting attack angle with their flippers [1]. These movements are driven by robust axial musculature anchored to a relatively rigid torso consisting of numerous short vertebrae, and controlled by hydrofoil-like flippers [2-7]. Eocene skeletons of whales illustrate the transition from semiaquatic to aquatic locomotion, including development of a fusiform body and reduction of hindlimbs [8-11], but the rarity of Oligocene whale skeletons [12, 13] has hampered efforts to understand the evolution of fluke-powered, but forelimb-controlled, locomotion. We report a nearly complete skeleton of the extinct large dolphin Ankylorhiza tiedemani comb. n. from the Oligocene of South Carolina, previously known only from a partial rostrum. Its forelimb is intermediate in morphology between stem cetaceans and extant taxa, whereas its axial skeleton displays incipient rigidity at the base of the tail with a flexible lumbar region. The position of Ankylorhiza near the base of the odontocete radiation implies that several postcranial specializations of extant cetaceans, including a shortened humerus, narrow peduncle, and loss of radial tuberosity, evolved convergently in odontocetes and mysticetes. Craniodental morphology, tooth wear, torso vertebral morphology, and body size all suggest that Ankylorhiza was a macrophagous predator that could swim relatively fast, indicating that it was one of the few extinct cetaceans to occupy a niche similar to that of killer whales.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Natação , Baleias/anatomia & histologia , Baleias/fisiologia , Animais , Tamanho Corporal , Filogenia , South Carolina
6.
Biol Lett ; 15(5): 20190083, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31088283

RESUMO

Toothed whales (Cetacea: Odontoceti) are the most diverse group of modern cetaceans, originating during the Eocene/Oligocene transition approximately 38 Ma. All extant odontocetes echolocate; a single origin for this behaviour is supported by a unique facial source for ultrasonic vocalizations and a cochlea adapted for hearing the corresponding echoes. The craniofacial and inner ear morphology of Oligocene odontocetes support a rapid (less than 5 Myr) early evolution of echolocation. Although some cranial features in the stem odontocetes Simocetus and Olympicetus suggest an ability to generate ultrasonic sound, until now, the bony labyrinths of taxa of this grade have not been investigated. Here, we use µCT to examine a petrosal of a taxon with clear similarities to Olympicetus avitus. Measurements of the bony labyrinth, when added to an extensive dataset of cetartiodactyls, resulted in this specimen sharing a morphospace with stem whales, suggesting a transitional inner ear. This discovery implies that either the lineage leading to this Olympicetus--like taxon lost the ability to hear ultrasonic sound, or adaptations for ultrasonic hearing evolved twice, once in xenorophids and again on the stem of the odontocete crown group. We favour the latter interpretation as it matches a well-documented convergence of craniofacial morphology between xenorophids and extant odontocetes.


Assuntos
Cetáceos , Fósseis , Animais , Evolução Biológica , Audição , Filogenia , Ultrassom , Baleias
7.
PeerJ ; 7: e6088, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30783558

RESUMO

The extinct giant shark Otodus megalodon is the last member of the predatory megatoothed lineage and is reported from Neogene sediments from nearly all continents. The timing of the extinction of Otodus megalodon is thought to be Pliocene, although reports of Pleistocene teeth fuel speculation that Otodus megalodon may still be extant. The longevity of the Otodus lineage (Paleocene to Pliocene) and its conspicuous absence in the modern fauna begs the question: when and why did this giant shark become extinct? Addressing this question requires a densely sampled marine vertebrate fossil record in concert with a robust geochronologic framework. Many historically important basins with stacked Otodus-bearing Neogene marine vertebrate fossil assemblages lack well-sampled and well-dated lower and upper Pliocene strata (e.g., Atlantic Coastal Plain). The fossil record of California, USA, and Baja California, Mexico, provides such an ideal sequence of assemblages preserved within well-dated lithostratigraphic sequences. This study reviews all records of Otodus megalodon from post-Messinian marine strata from western North America and evaluates their reliability. All post-Zanclean Otodus megalodon occurrences from the eastern North Pacific exhibit clear evidence of reworking or lack reliable provenance; the youngest reliable records of Otodus megalodon are early Pliocene, suggesting an extinction at the early-late Pliocene boundary (∼3.6 Ma), corresponding with youngest occurrences of Otodus megalodon in Japan, the North Atlantic, and Mediterranean. This study also reevaluates a published dataset, thoroughly vetting each occurrence and justifying the geochronologic age of each, as well as excluding several dubious records. Reanalysis of the dataset using optimal linear estimation resulted in a median extinction date of 3.51 Ma, somewhat older than a previously proposed Pliocene-Pleistocene extinction date (2.6 Ma). Post-middle Miocene oceanographic changes and cooling sea surface temperature may have resulted in range fragmentation, while alongside competition with the newly evolved great white shark (Carcharodon carcharias) during the Pliocene may have led to the demise of the megatoothed shark. Alternatively, these findings may also suggest a globally asynchronous extinction of Otodus megalodon.

8.
PeerJ ; 6: e5290, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30280011

RESUMO

The stem odontocete Agorophius pygmaeus (Ashley Formation, lower Oligocene, South Carolina; 29.0-26.57 Ma) has been a critical point of comparison for studies of early neocete evolution owing to its early discovery as well as its transitional anatomy relative to archaeocete whales and modern odontocetes. Some time during the late nineteenth century the holotype skull went missing and has never been relocated; supplementary reference specimens have since been recently referred to the species from the Ashley Formation and the overlying Chandler Bridge Formation (upper Oligocene; 24.7-23.5). New crania referable to Agorophius sp. are identifiable to the genus based on several features of the intertemporal region. Furthermore, all published specimens from the Chandler Bridge Formation consistently share larger absolute size and a proportionally shorter exposure of the parietal in the skull roof than specimens from the Ashley Formation (including the holotype). Furthermore, these specimens include well-preserved ethmoid labyrinths and cribriform plates, indicating that Agorophius primitively retained a strong olfactory sense. These new crania suggest that at least two species of Agorophius are present in the Oligocene of South Carolina, revealing a somewhat more complicated taxonomic perspective.

9.
PLoS One ; 12(11): e0186476, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29117197

RESUMO

We report five new specimens of xenorophid dolphins from North and South Carolina. Four of the specimens represent the xenorophid Albertocetus meffordorum, previously only known from the holotype skull. The other is a fragmentary petrosal from the upper Oligocene Belgrade Formation that we refer to Echovenator sp, indicating at least two xenorophids from that unit. Two of the Albertocetus meffordorum specimens are from the lower Oligocene Ashley Formation: 1) a partial skeleton with neurocranium, fragmentary mandible, ribs, vertebrae, and chevrons, and 2) an isolated braincase. The partial vertebral column indicates that Albertocetus retained the ancestral morphology and locomotory capabilities of basilosaurid archaeocetes, toothed mysticetes, and physeteroids, and caudal vertebrae that are as wide as tall suggest that the caudal peduncle, which occurs in all extant Cetacea, was either wide or lacking. CT data from the isolated braincase were used to generate a digital endocast of the cranial cavity. The estimated EQ of this specimen is relatively high for an Oligocene odontocete, and other aspects of the brain, such as its anteroposterior length and relative size of the temporal lobe, are intermediate in morphology between those of extant cetaceans and terrestrial artiodactyls. Ethmoturbinals are also preserved, and are similar in morphology and number to those described for the Miocene odontocete Squalodon. These fossils extend the temporal range of Albertocetus meffordorum into the early Oligocene, its geographic range into South Carolina, and expand our paleobiological understanding of the Xenorophidae.


Assuntos
Evolução Biológica , Golfinhos/anatomia & histologia , Fósseis/anatomia & histologia , Animais , Encéfalo/anatomia & histologia , Filogenia , Crânio/anatomia & histologia , Dente/anatomia & histologia , Baleias/anatomia & histologia
10.
Proc Biol Sci ; 284(1861)2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28835549

RESUMO

Toothed whales (Odontoceti) are adapted for catching prey underwater and possess some of the most derived feeding specializations of all mammals, including the loss of milk teeth (monophyodonty), high tooth count (polydonty), and the loss of discrete tooth classes (homodonty). Many extant odontocetes possess some combination of short, broad rostra, reduced tooth counts, fleshy lips, and enlarged hyoid bones-all adaptations for suction feeding upon fishes and squid. We report a new fossil odontocete from the Oligocene (approx. 30 Ma) of South Carolina (Inermorostrum xenops, gen. et sp. nov.) that possesses adaptations for suction feeding: toothlessness and a shortened rostrum (brevirostry). Enlarged foramina on the rostrum suggest the presence of enlarged lips or perhaps vibrissae. Phylogenetic analysis firmly places Inermorostrum within the Xenorophidae, an early diverging odontocete clade typified by long-snouted, heterodont dolphins. Inermorostrum is the earliest obligate suction feeder within the Odontoceti, a feeding mode that independently evolved several times within the clade. Analysis of macroevolutionary trends in rostral shape indicate stabilizing selection around an optimum rostral shape over the course of odontocete evolution, and a post-Eocene explosion in feeding morphology, heralding the diversity of feeding behaviour among modern Odontoceti.


Assuntos
Evolução Biológica , Golfinhos/classificação , Comportamento Alimentar , Filogenia , Animais , Fósseis , Dente , Baleias
11.
Curr Biol ; 27(13): 2036-2042.e2, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28669761

RESUMO

As the largest known vertebrates of all time, mysticetes depend on keratinous sieves called baleen to capture enough small prey to sustain their enormous size [1]. The origins of baleen are controversial: one hypothesis suggests that teeth were lost during a suction-feeding stage of mysticete evolution and that baleen evolved thereafter [2-4], whereas another suggests that baleen evolved before teeth were lost [5]. Here we report a new species of toothed mysticete, Coronodon havensteini, from the Oligocene of South Carolina that is transitional between raptorial archaeocete whales and modern mysticetes. Although the morphology and wear on its anterior teeth indicate that it captured large prey, its broad, imbricated, multi-cusped lower molars frame narrow slots that were likely used for filter feeding. Coronodon havensteini is a basal, if not the most basal, mysticete, and our analysis suggests that it is representative of an initial stage of mysticete evolution in which teeth were functional analogs to baleen. In later lineages, the diastema between teeth increased-in some cases, markedly so [6]-and may mark a stage at which the balance of the oral fissure shifted from mostly teeth to mostly baleen. When placed in a phylogenetic context, our new taxon indicates that filter feeding was preceded by raptorial feeding and that suction feeding evolved separately within a clade removed from modern baleen whales.


Assuntos
Evolução Biológica , Comportamento Alimentar , Fósseis/anatomia & histologia , Baleias/anatomia & histologia , Animais , Arcada Osseodentária/anatomia & histologia , Filogenia , South Carolina , Dente/anatomia & histologia , Baleias/classificação
12.
Naturwissenschaften ; 103(5-6): 44, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27142598

RESUMO

This study aimed to assess the enamel ultrastructure in modern otariid pinnipeds and in the extinct walrus Pelagiarctos. Teeth of the New Zealand fur seal (Arctocephalus forsteri), sea lion (Phocarctos hookeri), and fossil walrus Pelagiarctos thomasi were embedded, sectioned, etched, and analyzed via scanning electron microscopy. The enamel of NZ otariids and Pelagiarctos was prismatic and moderately thick, measuring 150-450 µm on average. It consisted of transversely oriented Hunter-Schreger bands (HSBs) from the enamel-dentine junction (EDJ) to near the outer surface, where it faded into prismless enamel less than 10 µm thick. The width of HSB was variable and averaged between 6 and 10 prisms, and they presented an undulating course both in longitudinal and cross sections. The overall organization of the enamel was similar in all teeth sampled; however, the enamel was thicker in canines and postcanines than in incisors. The crowns of all teeth sampled were uniformly covered by enamel; however, the grooved incisors lacked an enamel cover on the posterior side of the buccal face. Large tubules and tuft-like structures were seen at the EDJ. HSB enamel as well as tubules and tufts at the EDJ suggest increased occlusal loads during feeding, a biomechanical adaptation to avoid enamel cracking and failure. Despite overall simplification in tooth morphology and reduced mastication, the fossil and modern pinnipeds analyzed here retained the complex undulating HSB structure of other fossils and living Carnivora, while other marine mammals such as cetaceans developed simplified radial enamel.


Assuntos
Adaptação Fisiológica , Caniformia/anatomia & histologia , Esmalte Dentário/ultraestrutura , Fósseis , Morsas/anatomia & histologia , Animais , Comportamento Alimentar , Microscopia Eletrônica de Varredura
13.
PeerJ ; 3: e1129, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26380800

RESUMO

The Eocene history of cetacean evolution is now represented by the expansive fossil record of archaeocetes elucidating major morphofunctional shifts relating to the land to sea transition, but the change from archaeocetes to modern cetaceans is poorly established. New fossil material of the recently recognized family Eomysticetidae from the upper Oligocene Otekaike Limestone includes a new genus and species, Waharoa ruwhenua, represented by skulls and partial skeletons of an adult, juvenile, and a smaller juvenile. Ontogenetic status is confirmed by osteohistology of ribs. Waharoa ruwhenua is characterized by an elongate and narrow rostrum which retains vestigial alveoli and alveolar grooves. Palatal foramina and sulci are present only on the posterior half of the palate. The nasals are elongate, and the bony nares are positioned far anteriorly. Enormous temporal fossae are present adjacent to an elongate and narrow intertemporal region with a sharp sagittal crest. The earbones are characterized by retaining inner and outer posterior pedicles, lacking fused posterior processes, and retaining a separate accessory ossicle. Phylogenetic analysis supports inclusion of Waharoa ruwhenua within a monophyletic Eomysticetidae as the earliest diverging clade of toothless mysticetes. This eomysticetid clade also included Eomysticetus whitmorei, Micromysticetus rothauseni, Tohoraata raekohao, Tokarahia kauaeroa, Tokarahia lophocephalus, and Yamatocetus canaliculatus. Detailed study of ontogenetic change demonstrates postnatal elaboration of the sagittal and nuchal crests, elongation of the intertemporal region, inflation of the zygomatic processes, and an extreme proportional increase in rostral length. Tympanic bullae are nearly full sized during early postnatal ontogeny indicating precocial development of auditory structures, but do increase slightly in size. Positive allometry of the rostrum suggests an ontogenetic change in feeding ecology, from neonatal suckling to a more specialized adult feeding behaviour. Possible absence of baleen anteriorly, a delicate temporomandibular joint with probable synovial capsule, non-laterally deflected coronoid process, and anteroposteriorly expanded palate suggests skim feeding as likely mode of adult feeding for zooplankton. Isotopic data in concert with preservation of young juveniles suggests the continental shelf of Zealandia was an important calving ground for latitudinally migrating Oligocene baleen whales.

14.
Biol Lett ; 11(2): 20140835, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25672999

RESUMO

The poorly known fossil record of fur seals and sea lions (Otariidae) does not reflect their current diversity and widespread abundance. This limited fossil record contrasts with the more complete fossil records of other pinnipeds such as walruses (Odobenidae). The oldest known otariids appear 5-6 Ma after the earliest odobenids, and the remarkably derived craniodental morphology of otariids offers few clues to their early evolutionary history and phylogenetic affinities among pinnipeds. We report a new otariid, Eotaria crypta, from the lower middle Miocene 'Topanga' Formation (15-17.1 Ma) of southern California, represented by a partial mandible with well-preserved dentition. Eotaria crypta is geochronologically intermediate between 'enaliarctine' stem pinnipedimorphs (16.6-27 Ma) and previously described otariid fossils (7.3-12.5 Ma), as well as morphologically intermediate by retaining an M2 and a reduced M1 metaconid cusp and lacking P2-4 metaconid cusps. Eotaria crypta eliminates the otariid ghost lineage and confirms that otariids evolved from an 'enaliarctine'-like ancestor.


Assuntos
Fósseis , Otárias/anatomia & histologia , Otárias/classificação , Animais , Evolução Biológica , California , Filogenia
15.
Curr Biol ; 24(7): 774-9, 2014 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-24631245

RESUMO

Modern porpoises (Odontoceti: Phocoenidae) are some of the smallest cetaceans and usually feed near the seafloor on small fish and cephalopods [1-3]. Within both extinct and extant phocoenids, no evidence for specialized mandibular morphology has been documented [4-7]. Here we describe a new species of extinct porpoise, Semirostrum ceruttii, from the marine Pliocene San Diego (4.2-1.6 mega-annum, Ma) and Purisima (5-2.5 Ma) formations of California. The mandibles comprise a long, fused, and nearly edentulous prognathous symphysis, extending farther beyond the rostrum than in any known mammal. Phylogenetic analyses based on morphology reconstruct Semirostrum ceruttii as sister to extant (crown) porpoise species with moderate support. We describe the spectacularly preserved holotype specimen based on computed tomography (CT) scans, which allowed visualization of the elongate mental and accessory canals within the symphysis. The elongate canals are similar to those found in Rynchops birds [8] and were likely involved in sensory function. Oblique labial wear facets present on numerous small conical mandibular teeth posterior to the symphysis suggest regular contact with benthic substrate. The unique mandibular and dental characteristics, along with robust scapulae, sternum, and unfused cervical vertebrae, support the interpretation that this species employed a form of benthic skim feeding by using its mandible to probe for and obtain prey.


Assuntos
Mandíbula/anatomia & histologia , Toninhas/anatomia & histologia , Animais , California , Extinção Biológica , Comportamento Alimentar , Fósseis , Filogenia , Toninhas/classificação , Especificidade da Espécie
16.
PLoS One ; 9(3): e91419, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24626134

RESUMO

BACKGROUND: Taphonomic study of marine vertebrate remains has traditionally focused on single skeletons, lagerstätten, or bonebed genesis with few attempts to document environmental gradients in preservation. As such, establishment of a concrete taphonomic model for shallow marine vertebrate assemblages is lacking. The Neogene Purisima Formation of Northern California, a richly fossiliferous unit recording nearshore to offshore depositional settings, offers a unique opportunity to examine preservational trends across these settings. METHODOLOGY/PRINCIPAL FINDINGS: Lithofacies analysis was conducted to place vertebrate fossils within a hydrodynamic and depositional environmental context. Taphonomic data including abrasion, fragmentation, phosphatization, articulation, polish, and biogenic bone modification were recorded for over 1000 vertebrate fossils of sharks, bony fish, birds, pinnipeds, odontocetes, mysticetes, sirenians, and land mammals. These data were used to compare both preservation of multiple taxa within a single lithofacies and preservation of individual taxa across lithofacies to document environmental gradients in preservation. Differential preservation between taxa indicates strong preservational bias within the Purisima Formation. Varying levels of abrasion, fragmentation, phosphatization, and articulation are strongly correlative with physical processes of sediment transport and sedimentation rate. Preservational characteristics were used to delineate four taphofacies corresponding to inner, middle, and outer shelf settings, and bonebeds. Application of sequence stratigraphic methods shows that bonebeds mark major stratigraphic discontinuities, while packages of rock between discontinuities consistently exhibit onshore-offshore changes in taphofacies. CONCLUSIONS/SIGNIFICANCE: Changes in vertebrate preservation and bonebed character between lithofacies closely correspond to onshore-offshore changes in depositional setting, indicating that the dominant control of preservation is exerted by physical processes. The strong physical control on marine vertebrate preservation and preservational bias within the Purisima Formation has implications for paleoecologic and paleobiologic studies of marine vertebrates. Evidence of preservational bias among marine vertebrates suggests that careful consideration of taphonomic overprint must be undertaken before meaningful paleoecologic interpretations of shallow marine vertebrates is attempted.


Assuntos
Fósseis , Paleontologia , Vertebrados/fisiologia , Animais , Osso e Ossos/patologia , California , Meio Ambiente , Sedimentos Geológicos , Geologia , Dente/fisiologia
17.
Naturwissenschaften ; 100(4): 365-71, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23525578

RESUMO

Pliocene baleen whale assemblages are characterized by a mix of early records of extant mysticetes, extinct genera within modern families, and late surviving members of the extinct family Cetotheriidae. Although Pleistocene baleen whales are poorly known, thus far they include only fossils of extant genera, indicating Late Pliocene extinctions of numerous mysticetes alongside other marine mammals. Here a new fossil of the Late Neogene cetotheriid mysticete Herpetocetus is reported from the Lower to Middle Pleistocene Falor Formation of Northern California. This find demonstrates that at least one archaic mysticete survived well into the Quaternary Period, indicating a recent loss of a unique niche and a more complex pattern of Plio-Pleistocene faunal overturn for marine mammals than has been previously acknowledged. This discovery also lends indirect support to the hypothesis that the pygmy right whale (Caperea marginata) is an extant cetotheriid, as it documents another cetotheriid nearly surviving to modern times.


Assuntos
Fósseis , Filogenia , Baleias/anatomia & histologia , Baleias/classificação , Animais , California , Especificidade da Espécie
18.
PLoS One ; 8(1): e54311, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23342129

RESUMO

BACKGROUND: A number of aberrant walruses (Odobenidae) have been described from the Neogene of the North Pacific, including specialized suction-feeding and generalist fish-eating taxa. At least one of these fossil walruses has been hypothesized to have been a specialized predator of other marine mammals, the middle Miocene walrus Pelagiarctos thomasi from the Sharktooth Hill Bonebed of California (16.1-14.5 Ma). METHODOLOGY/PRINCIPAL FINDINGS: A new specimen of Pelagiarctos from the middle Miocene "Topanga" Formation of southern California (17.5-15 Ma) allows a reassessment of the morphology and feeding ecology of this extinct walrus. The mandibles of this new specimen are robust with large canines, bulbous premolars with prominent paraconid, metaconid, hypoconid cusps, crenulated lingual cingula with small talonid basins, M2 present, double-rooted P3-M1, single-rooted P1 and M2, and a P2 with a bilobate root. Because this specimen lacks a fused mandibular symphysis like Pelagiarctos thomasi, it is instead referred to Pelagiarctos sp. This specimen is more informative than the fragmentary holotype of Pelagiarctos thomasi, permitting Pelagiarctos to be included within a phylogenetic analysis for the first time. Analysis of a matrix composed of 90 cranial, dental, mandibular and postcranial characters indicates that Pelagiarctos is an early diverging walrus and sister to the late Miocene walrus Imagotaria downsi. We reevaluate the evidence for a macropredatory lifestyle for Pelagiarctos, and we find no evidence of specialization towards a macrophagous diet, suggesting that Pelagiarctos was a generalist feeder with the ability to feed on large prey. CONCLUSIONS/SIGNIFICANCE: This new specimen of Pelagiarctos adds to the knowledge of this problematic taxon. The phylogenetic analysis conclusively demonstrates that Pelagiarctos is an early diverging walrus. Pelagiarctos does not show morphological specializations associated with macrophagy, and was likely a generalist predator, feeding on fish, invertebrates, and the occasional warm-blooded prey item.


Assuntos
Fósseis , Morsas/classificação , Animais , Paleontologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA