Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1322136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352697

RESUMO

Purpose: Passive tibiofemoral anterior-posterior (AP) laxity has been extensively investigated after posterior cruciate ligament (PCL) single-bundle reconstruction. However, the PCL also plays an important role in providing rotational stability in the knee. Little is known in relation to the effects of PCL single-bundle reconstruction on passive tibiofemoral rotational laxity. Gait biomechanics after PCL reconstruction are even less understood. The aim of this study was a comprehensive prospective biomechanical in vivo analysis of the effect of PCL single-bundle reconstruction on passive tibiofemoral rotational laxity, passive anterior-posterior laxity, and gait pattern. Methods: Eight patients undergoing PCL single-bundle reconstruction (seven male, one female, mean age 35.6 ± 6.6 years, BMI 28.0 ± 3.6 kg/m2) were analyzed preoperatively and 6 months postoperatively. Three of the eight patients received additional posterolateral corner (PLC) reconstruction. Conventional stress radiography was used to evaluate passive translational tibiofemoral laxity. A previously established rotometer device with a C-arm fluoroscope was used to assess passive tibiofemoral rotational laxity. Functional gait analysis was used to examine knee kinematics during level walking. Results: The mean side-to-side difference (SSD) in passive posterior translation was significantly reduced postoperatively (12.1 ± 4.4 mm vs. 4.3 ± 1.8 mm; p < 0.01). A significant reduction in passive tibiofemoral rotational laxity at 90° knee flexion was observed postoperatively (27.8° ± 7.0° vs. 19.9° ± 7.5°; p = 0.02). The range of AP tibiofemoral motion during level walking was significantly reduced in the reconstructed knees when compared to the contralateral knees at 6-month follow-up (16.6 ± 2.4 mm vs. 13.5 ± 1.6 mm; p < 0.01). Conclusion: PCL single-bundle reconstruction with optional PLC reconstruction reduces increased passive tibiofemoral translational and rotational laxity in PCL insufficient knees. However, increased passive tibiofemoral translational laxity could not be fully restored and patients showed altered knee kinematics with a significantly reduced range of tibiofemoral AP translation during level walking at 6-month follow-up. The findings of this study indicate a remaining lack of restoration of biomechanics after PCL single-bundle reconstruction in the active and passive state, which could be a possible cause for joint degeneration after PCL single-bundle reconstruction.

2.
Sci Rep ; 12(1): 13232, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918487

RESUMO

Passive translational tibiofemoral laxity has been extensively examined in posterior cruciate ligament (PCL) insufficient patients and belongs to the standard clinical assessment. However, objective measurements of passive rotational knee laxity, as well as range of tibiofemoral motion during active movements, are both not well understood. None of these are currently quantified in clinical evaluations of patients with PCL insufficiency. The objective of this study was to quantify passive translational and rotational knee laxity as well as range of anterior-posterior and rotational tibiofemoral motion during level walking in a PCL insufficient patient cohort as a basis for any later clinical evaluation and therapy. The laxity of 9 patient knees with isolated PCL insufficiency or additionally posterolateral corner (PLC) insufficiency (8 males, 1 female, age 36.78 ± 7.46 years) were analysed and compared to the contralateral (CL) knees. A rotometer device with a C-arm fluoroscope was used to assess the passive tibiofemoral rotational laxity while stress radiography was used to evaluate passive translational tibiofemoral laxity. Functional gait analysis was used to examine the range of anterior-posterior and rotational tibiofemoral motion during level walking. Passive translational laxity was significantly increased in PCL insufficient knees in comparison to the CL sides (15.5 ± 5.9 mm vs. 3.7 ± 1.9 mm, p < 0.01). Also, passive rotational laxity was significantly higher compared to the CL knees (26.1 ± 8.2° vs. 20.6 ± 5.6° at 90° knee flexion, p < 0.01; 19.0 ± 6.9° vs. 15.5 ± 5.9° at 60° knee flexion, p = 0.04). No significant differences were observed for the rotational (16.3 ± 3.7° vs. 15.2 ± 3.6°, p = 0.43) and translational (17.0 ± 5.4 mm vs. 16.1 ± 2.8 mm, p = 0.55) range of anterior-posterior and rotational tibiofemoral motion during level walking conditions for PCL insufficient knees compared to CL knees respectively. The present study illustrates that patients with PCL insufficiency show a substantial increased passive tibiofemoral laxity, not only in tibiofemoral translation but also in tibiofemoral rotation. Our data indicate that this increased passive multiplanar knee joint laxity can be widely compensated during level walking. Further studies should investigate progressive changes in knee joint laxity and kinematics post PCL injury and reconstruction to judge the individual need for therapy and effects of physiotherapy such as quadriceps force training on gait patterns in PCL insufficient patients.


Assuntos
Instabilidade Articular , Ligamento Cruzado Posterior , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Articulação do Joelho , Masculino , Amplitude de Movimento Articular , Rotação , Tíbia/cirurgia , Caminhada
3.
Rheumatology (Oxford) ; 60(11): 5282-5291, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33822899

RESUMO

OBJECTIVES: The clinical parameter of morning stiffness is widely used to assess the status of RA, but its accurate quantitative assessment in a clinical setting has not yet been successful. This lack of individual quantification limits both personalized medication and efficacy evaluation in the treatment of RA. METHODS: We developed a novel technology to assess passive resistance of the MCP III joint (stiffness) and its passive range of motion (PRoM). Within this pilot study, 19 female postmenopausal RA patients and 9 healthy controls were examined in the evening as well as the morning of the following day. To verify the specificity of the biomechanical quantification, 11 patients with RA were assessed both prior to and ∼3 h after glucocorticoid therapy. RESULTS: While the healthy controls showed only minor changes between afternoon and morning, in RA patients the mean PRoM decreased significantly by 18% (s.d. 22) and stiffness increased significantly by 20% (s.d. 18) in the morning compared with the previous afternoon. We found a significant positive correlation between RA activity and biomechanical measures. Glucocorticoids significantly increased the mean PRoM by 16% (s.d. 11) and reduced the mean stiffness by 23% (s.d. 22). CONCLUSION: This technology allowed mechanical stiffness to be quantified in MCP joints and demonstrated high sensitivity with respect to disease status as well as medication effect in RA patients. Such non-invasive, low-risk and rapid assessment of biomechanical joint stiffness opens a novel avenue for judging therapy efficacy in patients with RA and potentially also in other non-RA inflammatory joint diseases.


Assuntos
Artrite Reumatoide/fisiopatologia , Artrometria Articular/métodos , Índice de Gravidade de Doença , Adulto , Idoso , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Estudos de Casos e Controles , Feminino , Humanos , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde/métodos , Projetos Piloto
4.
Clin Biomech (Bristol, Avon) ; 79: 104935, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31889565

RESUMO

BACKGROUND: Knee cartilage undergoes pathological changes after anterior cruciate ligament rupture. However, little is known about the development and progression of structural pathology after posterior cruciate ligament (PCL) injury. This study aimed to determine the location-specific longitudinal changes in knee cartilage morphology (thickness) and composition (T2 relaxation-times) after PCL rupture and reconstruction (PCLR) and compare these to uninjured controls. METHODS: Fifteen adults (mean age 39 years (standard deviation 10), 12 men) with PCLR for isolated and multiligment injury had MRIs acquired at a minimum 5 years post-PCLR and 1 year later. Location-specific changes in knee cartilage thickness and T2 relaxation-times were determined quantitatively after segmentation, and compared with annualised cartilage changes in 13 active controls (mean age 45 years (standard deviation 4), 6 men). FINDINGS: Following PCLR, the annual loss of cartilage thickness was greatest in the medial femoral condyle (mean -4.0%, 95% confidence interval [95% CI] -6.7, -1.4), medial tibia (mean -3.7%, 95% CI -6.1, -1.3), and patella (mean -3.2%, 95% CI -4.7, -1.6). In the medial femoral condyle and trochlea, the PCLR group lost significantly more cartilage thickness than uninjured controls (mean difference -3.7%, 95% CI -0.9, -6.5; and -1.8%, 95% CI -0.1, -3.6, respectively). Deep and superficial zone T2 relaxation-times were relatively constant over time, without longitudinal differences between PCLR and control knees. INTERPRETATION: PCL reconstructed knees displayed substantially greater rates of cartilage loss in the medial tibiofemoral and patellofemoral compartments compared to uninjured controls, highlighting that the process of degeneration remains active many years after injury.


Assuntos
Cartilagem Articular/patologia , Reconstrução do Ligamento Cruzado Posterior/efeitos adversos , Ligamento Cruzado Posterior/lesões , Ligamento Cruzado Posterior/cirurgia , Adulto , Cartilagem Articular/diagnóstico por imagem , Feminino , Humanos , Instabilidade Articular/etiologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
5.
J Exp Orthop ; 6(1): 19, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31053993

RESUMO

BACKGROUND: An early detection of Osteoarthritis is urgently needed and still not possible until today. The aim of the study was to assess whether molecular biomarkers of cartilage turnover are associated with longitudinal change in knee cartilage thickness during a 2 year period in individuals with increased risk of developing knee osteoarthritis. A secondary aim was to assess whether prior knee injury or subjective patient-reported outcomes at baseline (BL) were associated with articular cartilage changes. Nineteen volleyball players (mean age 46.5 ± 4.9 years, 47% male) with a 30-year history of regular high impact training were recruited. The serum biomarkers Cpropeptide of type II procollagen (CPII), cartilage oligomeric matrix protein (COMP), collagenase generated carboxy-terminal neoepitope of type II collagen (sC2C), cartilage intermediate layer protein 2 (CILP-2), and the urine biomarkers C-telopeptide of type II collagen (CTX-II) and collagenase-generated peptide(s) of type II collagen (C2C-HUSA) were assessed at BL and at 2 year follow up (FU). Femorotibial cartilage thinning, thickening and absolute thickness change between BL and FU was evaluated from magnetic resonance imaging. Subjective clinical status at BL was evaluated by the International Knee Documentation Committee Subjective Knee Form and the Short-Form 36 Physical Component Score. RESULTS: CILP-2 was significantly higher at FU and linearly associated with the absolute cartilage thickness change during the experimental period. Prior injury was a predictor of increased absolute cartilage thickness change. CONCLUSION: Measuring the change in the cartilage biomarker CILP-2 might be a valid and sensitive method to detect early development of knee osteoarthritis as CILP-2 appears to be related to cartilage thickness loss in certain individuals with increased risk of developing knee osteoarthritis. Prior knee injury may be predictive of increased articular cartilage thickness change.

6.
Arch Orthop Trauma Surg ; 138(3): 377-385, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29209793

RESUMO

INTRODUCTION: Posterior cruciate ligament reconstruction (PCLR) is advocated to prevent an early onset of osteoarthritis. We hypothesized that posterior instability after PCLR correlates with degenerative changes. MATERIALS AND METHODS: MRIs of 42 (12 female/30 male; 39 ± 9 years) patients were enrolled with a minimum 5-year follow-up (FFU) after PCLR. In addition, 25 contralateral and 15 follow-up MRIs (12 months after baseline) were performed. Degenerative changes were graded using WORMS. Posterior tibial translation (PTT) was measured using posterior stress radiographs. Outcome parameters included WORMS/cartilage subscore for the whole joint, patellofemoral (PFJ), medial (MFTJ), and lateral femorotibial joint (LFTJ). RESULTS: Final follow-up was 101 (range 68-168) months. WORMS reached 41.5 [18.5-56.8]. Regional WORMS for PFJ was significantly higher than MFTJ and LFTJ. Cartilage subscore yielded 7 [2.8-15]. MFTJ and PFJ were significantly higher than LFTJ. Primary outcome parameters were significantly higher than the contralateral knee (P < 0.0001) and significantly increased within 12 months (P = 0.0002). There was a significant correlation between the intraoperative degree of cartilage injury and WORMS (P < 0.0001 with r = 0.64) and between the number of previous surgery and the cartilage subscore (P = 0.03 with r = 0.32). Meniscal surgery led to a significantly higher WORMS (P = 0.035). Combined risk models revealed that women below the mean age had significantly lower WORMS (P = 0.001) and cartilage subscores (P = 0.003). CONCLUSIONS: Patients undergo degenerative changes after PCLR, which are significantly higher compared to the contralateral knee. These occur predominantly at PFJ/MFTJ and are irrespective of posterior stability. Concomitant meniscus/cartilage injuries and a high number of previous surgeries are further risk factors.


Assuntos
Instabilidade Articular/diagnóstico por imagem , Articulação do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/diagnóstico por imagem , Reconstrução do Ligamento Cruzado Posterior , Adulto , Cartilagem Articular/diagnóstico por imagem , Feminino , Seguimentos , Humanos , Imageamento por Ressonância Magnética , Masculino , Procedimentos Ortopédicos/estatística & dados numéricos , Fatores de Risco
7.
Knee Surg Sports Traumatol Arthrosc ; 26(6): 1645-1655, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28656456

RESUMO

PURPOSE: As the aims of changes in total knee arthroplasty (TKA) designs are to reinstate more natural kinematics, the current study evaluated the in vivo kinematics in patients who underwent a cruciate retaining gradually changing femoral radius ("G-CURVE") against a cruciate retaining conventional changing femoral radius ("J-CURVE") geometry TKA design. The hypothesis of the study is that the G-CURVE design would allow a substantial increase in the femoral rollback compared to the J-CURVE design. METHODS: Retrospective study design. Thirty patients were included (G-CURVE, n = 20; J-CURVE, n = 10). Single-plane fluoroscopic analysis and marker-based motion capture gait analysis was performed to analyse dynamic tibiofemoral motion during weight-bearing and unloaded activities at 24 month after index surgery. RESULTS: The analysis of the medial and lateral points on the tibia plateau during the unloaded flexion-extension and the weight-bearing lunge activities revealed a significant difference in femoral rollback in G-CURVE TKA above 60° (p = 0.001) and 30° (p = 0.02) of knee flexion, respectively. Moreover, the lateral condyle of the G-CURVE showed a higher extent of femoral rollback while the lateral condyle of the J-CURVE rolled forward. CONCLUSION: At 2 years post-operative, the G-CURVE TKA showed significant differences in femoro-tibial translation in comparison with the J-CURVE system, in vivo. The G-CURVE resulted in an increased lateral rollback and simultaneously in an elimination of the paradoxical medial roll-forward present in the J-CURVE design. Moreover, knee kinematics analysis showed significant differences between unloaded and weight-bearing conditions revealing the impact of load and muscle force. The analysis conducted in this study contributes to further understand the principal movement characteristics in widely used older designs in comparison with recently developed concepts to get a better overview on their potential benefits on in vivo kinematics. LEVEL OF EVIDENCE: III.


Assuntos
Artroplastia do Joelho/efeitos adversos , Artroplastia do Joelho/instrumentação , Fêmur/cirurgia , Articulação do Joelho/cirurgia , Osteoartrite do Joelho/cirurgia , Tíbia/cirurgia , Idoso , Artroplastia do Joelho/métodos , Fenômenos Biomecânicos , Feminino , Fêmur/diagnóstico por imagem , Fêmur/fisiopatologia , Fluoroscopia , Humanos , Imageamento Tridimensional , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/fisiopatologia , Prótese do Joelho , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/fisiopatologia , Desenho de Prótese , Amplitude de Movimento Articular/fisiologia , Estudos Retrospectivos , Análise e Desempenho de Tarefas , Tíbia/diagnóstico por imagem , Tíbia/fisiopatologia
8.
Eur J Radiol ; 92: 24-29, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28624016

RESUMO

OBJECTIVE: Patellofemoral cartilage changes have been evaluated in knee trauma and osteoarthritis; however, little is known about changes in patellar and trochlear cartilage thickness, T2 relaxation-time and subchondral bone plate area (tAB) during growth. Our prospective study aimed to explore longitudinal change in patellofemoral cartilage thickness, T2 and tAB in adolescent athletes, and to compare these data with those of mature (i.e., adult) athletes. MATERIALS AND METHODS: 20 adolescent (age 16±1years) and 20 mature (46±5years) volleyball players were studied over 2-years (10 men and 10 women each group). 1.5T MRI 3D-VIBE and multi-echo spin-echo sequences were acquired at baseline and 2-year follow-up. Using manual segmentation and 3D reconstruction, longitudinal changes in patellar and trochlear cartilage thickness, patellar cartilage T2 (mono-exponential decay curve with five echoes [9.7-67.9ms]), and patellar and trochlear tAB were determined. RESULTS: The annual increase in both patellar and trochlear cartilage thickness was 0.8% (95% confidence interval [CI] 0.6, 1.0) and 0.6% (0.3, 0.9), for adolescent males and females respectively; the longitudinal gain in patellar and trochlear tAB was 1.3% (1.1, 1.5) and 0.5% (0.2, 0.8), and 1.6% (1.1, 2.2) and 0.8% (0.3, 0.7) for adolescent males and females, respectively (no significant between-sex differences). Mature athletes showed smaller gains in tAB, and loss of <1% of cartilage thickness annually. While no significant sex-differences existed in adolescent patellar T2 changes, mature males gained significantly greater T2 than mature females (p=0.002-0.013). CONCLUSIONS: Patellar and trochlear cartilage thickness and tAB were observed to increase in young athletes in late adolescence, without significant differences between sexes. Mature athletes displayed patellar cartilage loss (and T2 increases in mature males), potentially reflecting degenerative changes.


Assuntos
Placas Ósseas/normas , Cartilagem Articular/lesões , Imageamento por Ressonância Magnética/métodos , Patela/diagnóstico por imagem , Adolescente , Adulto , Atletas , Feminino , Humanos , Masculino , Estudos Prospectivos , Caracteres Sexuais
9.
J Exp Orthop ; 4(1): 6, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28224374

RESUMO

BACKGROUND: To longitudinally and cross-sectionally evaluate knee abnormalities by sex and age in adolescent and adult volleyball athletes over 2 years using magnetic resonance imaging (MRI). METHODS: Thirty-six high-level volleyball athletes (18 adolescents: 56% female, mean age 16.0 ± 0.8 years; and 18 adults: 50% female, mean age 46.8 ± 5.1 years) were imaged by MRI at BL and at 2-year follow-up (FU). Prevalence and severity of cartilage lesions, subarticular bone marrow lesions (BMLs), subarticular cysts, osteophytes, and ligament and meniscus integrity were evaluated by sex and by age cohort (adolescents and adults) using the whole-organ MRI score (WORMS). RESULTS: There were no significant longitudinal changes in any of the features within any of the sex or age groups. No significant differences were found in overall prevalence or severity of any of the features between males and females, although at FU, males had a significantly higher prevalence of osteophytes in the medial femorotibial joint (MFTJ) than females (p=0.044). Compared to adolescents, adult volleyball players had a significantly greater prevalence and severity of cartilage lesions (p<0.001 for both), BMLs (p=0.0153 and p=0.005), and osteophytes (p≤0.003 and p<0.001), and more severe meniscal lesions (p≤0.021). CONCLUSION: We found significant differences in the prevalence and severity of knee abnormalities between adolescent and adult volleyball players, but no overall differences by sex. These findings lay the groundwork for further investigations with larger cohorts and longer FU times to determine whether or not these knee abnormalities are associated with the development of OA.

10.
J Exp Orthop ; 4(1): 7, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28229430

RESUMO

BACKGROUND: This study aimed the feasibility to assess longitudinal changes in biomarkers of cartilage turnover and to determine their relationship with patient-rated outcomes over 2 years in volleyball athletes. METHODS: Thirty-seven athletes were studied: 18 adolescents (age 15.9 ± 0.64 years) in a 2-year intensive volleyball training program and 19 adult recreational volleyball players (age 46.5 ± 4.9 years). Blood and serum samples were taken at baseline (BL) and 2-year follow-up (FU). Subjects completed the International Knee Documentation Committee (IKDC) Subjective Knee Form and the Short-Form 36 (SF-36) at BL. RESULTS: Thirteen adolescents (72%) had open growth plates at BL (BL open adolescents), the rest had closed growth plates at BL (BL closed adolescents), and all but one adolescent had closed growth plates at FU as assessed by MRI. BL open and closed adolescents had greater levels of the cartilage degradation-based biomarkers 45 mer collagenase peptide of type II collagen (C2C-HUSA) and C-telopeptide of type II collagen (CTX-II) than adults. BL open adolescents showed decreases in C2CHUSA, collagen synthesis marker C-propeptide of type II procollagen (CPII), and CTXII, and adults showed increases in cartilage intermediate layer protein 2 (CILP-2) and C2C-HUSA. In adolescents, IKDC scores were correlated with CPII changes. In adults, SF-36 Physical Component Scores were correlated with cartilage oligomeric matrix protein (COMP) changes. CONCLUSION: Significant differences in biomarker levels over time show the feasibility to assess their changes. Greater levels of C2C-HUSA and CTX-II in adolescents than in adults may reflect increased cartilage turnover in response to higher joint loading. CPII and COMP may be more reflective of subjective patient outcomes. These biomarkers may thus be useful in assessing mechanical loading-induced cartilage changes, their associated symptoms, and Osteoarthritis risk in athletes.

11.
PLoS One ; 11(7): e0159600, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27467744

RESUMO

While the anterior cruciate ligament (ACL) is considered one of the most important ligaments for providing knee joint stability, its influence on rotational laxity is not fully understood and its role in resisting rotation at different flexion angles in vivo remains unknown. In this prospective study, we investigated the relationship between in vivo passive axial rotational laxity and knee flexion angle, as well as how they were altered with ACL injury and reconstruction. A rotometer device was developed to assess knee joint rotational laxity under controlled passive testing. An axial torque of ±2.5Nm was applied to the knee while synchronised fluoroscopic images of the tibia and femur allowed axial rotation of the bones to be accurately determined. Passive rotational laxity tests were completed in 9 patients with an untreated ACL injury and compared to measurements at 3 and 12 months after anatomical single bundle ACL reconstruction, as well as to the contralateral controls. Significant differences in rotational laxity were found between the injured and the healthy contralateral knees with internal rotation values of 8.7°±4.0° and 3.7°±1.4° (p = 0.003) at 30° of flexion and 9.3°±2.6° and 4.0°±2.0° (p = 0.001) at 90° respectively. After 3 months, the rotational laxity remained similar to the injured condition, and significantly different to the healthy knees. However, after 12 months, a considerable reduction of rotational laxity was observed towards the levels of the contralateral controls. The significantly greater laxity observed at both knee flexion angles after 3 months (but not at 12 months), suggests an initial lack of post-operative rotational stability, possibly due to reduced mechanical properties or fixation stability of the graft tissue. After 12 months, reduced levels of rotational laxity compared with the injured and 3 month conditions, both internally and externally, suggests progressive rotational stability of the reconstruction with time.


Assuntos
Reconstrução do Ligamento Cruzado Anterior/métodos , Fêmur/cirurgia , Tíbia/cirurgia , Adulto , Feminino , Fêmur/fisiopatologia , Humanos , Instabilidade Articular , Masculino , Tíbia/fisiopatologia , Adulto Jovem
12.
Gait Posture ; 40(4): 730-4, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25161008

RESUMO

The division of gait into cycles is crucial for identifying deficits in locomotion, particularly to monitor disease progression or rehabilitative recovery. Initial contact (IC) events are often used to separate movement into repetitive cycles yet automatic methods for IC identification in pathological gait are limited in both number and capacity. The aim of this work was to develop a more precise algorithm in IC detection. A projected heel markers distance (PHMD) algorithm is presented here and compared for accuracy to the high pass algorithm (HPA) in IC identification. Kinematic gait data from two clinical cohorts were analyzed and processed automatically for IC detection: (1) unilateral total hip arthroplasty (THA) patients (n=27) and (2) cerebral palsy pediatric (CPP) patients (n=20). IC events determined by the two algorithms were benchmarked against the IC events detected manually and from force plates. The PHMD method detected 96.6% IC events in THA patients and 99.1% in CPP patients with an average error of 5.3 ms and 18.4 ms. The HPA method detected 99.1% IC events in THA patients and 97.3% IC events in CPP patients, with an average error of 57.5 ms and 10.2 ms. PHMD identified no superfluous IC events, whereas 51.5% of all THA IC and 47.6% of CPP IC were superfluous events requiring manual deletion with HPA. With the superior comparison against the current gold standard, the PHMD algorithm appears valid for a wide spectrum of clinical data sets and allows for precise, fully automatic processing of kinematic gait data without additional sensors, triggers, or force plates.


Assuntos
Algoritmos , Artroplastia de Quadril , Paralisia Cerebral/fisiopatologia , Caminhada/fisiologia , Idoso , Fenômenos Biomecânicos/fisiologia , Criança , Pré-Escolar , Feminino , Marcha/fisiologia , Humanos , Locomoção , Masculino , Monitorização Ambulatorial/métodos , Pressão
13.
Ann Anat ; 196(2-3): 150-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24439995

RESUMO

Little is known about changes in human cartilage thickness and subchondral bone plate area (tAB) during growth. The objective of this study was to explore longitudinal change in femorotibial cartilage thickness and tAB in adolescent athletes, and to compare these data with those of mature former athletes. Twenty young (baseline age 16.0 ± 0.6 years) and 20 mature (46.3 ± 4.7 years) volleyball athletes were studied (10 men and 10 women in each group). Magnetic resonance images were acquired at baseline and at year 2-follow-up, and longitudinal changes in cartilage thickness and tAB were determined quantitatively after segmentation. The yearly increase in total femorotibial cartilage thickness was 0.8% (95% confidence interval [CI]: -0.5; 2.1%) in young men and 1.4% (95% CI: 0.7; 2.2%) in young women; the gain in tAB was 0.4% (95% CI: -0.1; 0.8%) and 0.7% (95% CI: 0.2; 1.2%), respectively (no significant difference between sexes). The cartilage thickness increase was greatest in the medial femur, and was not significantly associated with the variability in tAB growth (r=-0.19). Mature athletes showed smaller gains in tAB, and lost >1% of femorotibial cartilage per annum, with the greatest loss observed in the lateral tibia. In conclusion, we find an increase in cartilage thickness (and some in tAB) in young athletes toward the end of adolescence. This increase appeared somewhat greater in women than men, but the differences between both sexes did not reach statistical significance. Mature (former) athletes displayed high rates of (lateral) femorotibial cartilage loss, potentially due to a high prevalence of knee injuries.


Assuntos
Atletas , Cartilagem Articular/anatomia & histologia , Cartilagem Articular/crescimento & desenvolvimento , Fêmur/anatomia & histologia , Fêmur/crescimento & desenvolvimento , Lâmina de Crescimento/anatomia & histologia , Lâmina de Crescimento/crescimento & desenvolvimento , Tíbia/anatomia & histologia , Tíbia/crescimento & desenvolvimento , Adolescente , Adulto , Traumatismos em Atletas/patologia , Desenvolvimento Ósseo , Cartilagem Articular/lesões , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Fraturas Salter-Harris , Caracteres Sexuais , Voleibol/lesões
14.
Am J Sports Med ; 41(5): 1051-7, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23492824

RESUMO

BACKGROUND: Although instability of the knee joint is known to modify gait patterns, the amount that patients compensate for joint laxity during active movements remains unknown. PURPOSE: By developing a novel technique to allow the assessment of tibiofemoral kinematics, this study aimed to elucidate the role of passive joint laxity on active tibiofemoral kinematics during walking. STUDY DESIGN: Controlled laboratory study. METHODS: Using motion capture, together with combinations of advanced techniques for assessing skeletal kinematics (including the symmetrical axis of rotation approach [SARA], symmetrical center of rotation estimation [SCoRE], and optimal common shape technique [OCST]), a novel noninvasive approach to evaluate dynamic tibiofemoral motion was demonstrated as both reproducible and repeatable. Passive and active anterior-posterior translations of the tibiofemoral joint were then examined in 13 patients with anterior cruciate ligament (ACL) ruptures that were confirmed by magnetic resonance imaging and compared with those in their healthy contralateral limbs. RESULTS: Passive tibial anterior translation was significantly greater in the ACL-ruptured knees than in the contralateral healthy controls. However, the femora of the ACL-ruptured knees generally remained more posterior (~3 mm) relative to the tibia within a gait cycle of walking compared with the healthy limbs. Surprisingly, the mean range of tibiofemoral anterior-posterior translation over an entire gait cycle was significantly lower in ACL-ruptured knees than in the healthy joints (P = .026). A positive correlation was detected between passive laxity and active joint mobility, but with a consistent reduction in the range of tibiofemoral anterior-posterior translation of approximately 3 mm in the ACL-deficient knees. CONCLUSION: It seems that either active stabilization of tibiofemoral kinematics or anterior subluxation of the tibia reduces joint translation in lax knees. This implies that either a muscular overcompensation mechanism or a physical limitation due to secondary passive stabilizers occurs within the joint and thus produces a situation that has a reduced range of active motion compared with knees with physiological stability. CLINICAL RELEVANCE: The reduced range of active tibiofemoral translation suggests overloading of the passive structures in passively lax knees, either through excessive muscular action or joint subluxation, and could provide a plausible mechanism for explaining posttraumatic degeneration of cartilage in the joint.


Assuntos
Lesões do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior/fisiopatologia , Marcha/fisiologia , Instabilidade Articular/fisiopatologia , Articulação do Joelho/fisiopatologia , Amplitude de Movimento Articular , Adaptação Fisiológica , Adulto , Análise de Variância , Fenômenos Biomecânicos , Feminino , Fêmur/fisiopatologia , Humanos , Instabilidade Articular/etiologia , Imageamento por Ressonância Magnética , Masculino , Ruptura/complicações , Ruptura/fisiopatologia , Tíbia/fisiopatologia , Caminhada/fisiologia , Adulto Jovem
15.
J Biomed Opt ; 14(4): 044017, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19725728

RESUMO

Near-infrared spectroscopy is used to quantify the subcutaneous adipose tissue thickness (ATT) over five muscle groups (vastus medialis, vastus lateralis, gastrocnemius, ventral forearm and biceps brachii muscle) of healthy volunteers (n=20). The optical lipid signal (OLS) was obtained from the second derivative of broad band attenuation spectra and the lipid absorption peak (lambda=930 nm). Ultrasound and MR imaging as well as mechanical calliper readings were taken as reference methods. The data show that the OLS is a good predictor for ATT (<16 mm) with absolute and relative errors of <0.8 mm and <24%, respectively. The optical method compares favourably with calliper reading. The finding of a non-linear relationship of optical signal vs. ultrasound is explained by a theoretical two-layer model based on the diffusion approximation for the transport of photons. The crosstalk between the OLS and tissue hemoglobin concentration changes during an incremental cycling exercise was found to be small, indicating the robustness of OLS. Furthermore, the effect of ATT on spatially-resolved spectroscopy measurements is shown to decrease the calculated muscle hemoglobin concentration and to increase oxygen saturation.


Assuntos
Tecido Adiposo/fisiologia , Adiposidade/fisiologia , Modelos Biológicos , Músculo Esquelético/fisiologia , Tamanho do Órgão/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Simulação por Computador , Humanos , Imageamento por Ressonância Magnética/métodos , Exame Físico/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ultrassonografia/métodos
16.
J Biomed Opt ; 13(4): 041311, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19021319

RESUMO

In vivo molecular fluorescence tomography of brain disease mouse models has two very specific demands on the optical setup: the use of pigmented furry mice does not allow for a purely noncontact setup, and a high spatial accuracy is required on the dorsal side of the animal due to the location of the brain. We present an optimized setup and tomographic scheme that meet these criteria through a combined CW reflectance-transmittance fiber illumination approach and a charge-coupled device contactless detection scheme. To consider the anatomy of the mouse head and take short source detector separations into account, the forward problem was evaluated by a Monte Carlo simulation input with a magnetic resonance image of the animal. We present an evaluation of reconstruction performance of the setup under three different condition. (i) Using a simulated dataset, with well-defined optical properties and low noise, the reconstructed position accuracy is below 0.5 mm. (ii) Using experimental data on a cylindrical tissue-simulating phantom with well-defined optical properties, a spatial accuracy of about 1 mm was found. (iii) Finally, on an animal model with a fluorescent inclusion in the brain, the target position was reconstructed with an accuracy of 1.6 mm.


Assuntos
Encéfalo/citologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Tomografia Óptica/métodos , Animais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA