Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951650

RESUMO

The voltage penalty driving water dissociation (WD) at high current density is a major obstacle in the commercialization of bipolar membrane (BPM) technology for energy devices. Here we show that three materials descriptors, that is, electrical conductivity, microscopic surface area and (nominal) surface-hydroxyl coverage, effectively control the kinetics of WD in BPMs. Using these descriptors and optimizing mass loading, we design new earth-abundant WD catalysts based on nanoparticle SnO2 synthesized at low temperature with high conductivity and hydroxyl coverage. These catalysts exhibit exceptional performance in a BPM electrolyser with low WD overvoltage (ηwd) of 100 ± 20 mV at 1.0 A cm-2. The new catalyst works equivalently well with hydrocarbon proton-exchange layers as it does with fluorocarbon-based Nafion, thus providing pathways to commercializing advanced BPMs for a broad array of electrolysis, fuel-cell and electrodialysis applications.

2.
Chem Sci ; 15(13): 4996-5008, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38550699

RESUMO

The electrified aqueous/metal interface is critical in controlling the performance of energy conversion and storage devices, but an atomistic understanding of even basic interfacial electrochemical reactions challenges both experiment and computation. We report a combined simulation and experimental study of (reversible) ion-transfer reactions involved in anodic Ag corrosion/deposition, a model system for interfacial electrochemical processes generating or consuming ions. With the explicit modeling of the electrode potential and a hybrid implicit-explicit solvation model, the density functional theory calculations produce free energy curves predicting thermodynamics, kinetics, partial charge profiles, and reaction trajectories. The calculated (equilibrium) free energy barriers (0.2 eV), and their asymmetries, agree with experimental activation energies (0.4 eV) and transfer coefficients, which were extracted from temperature-dependent voltage-step experiments on Au-supported, Ag-nanocluster substrates. The use of Ag nanoclusters eliminates the convolution of the kinetics of Ag+(aq.) generation and transfer with those of nucleation or etch-pit formation. The results indicate that the barrier is controlled by the bias-dependent competition between partial solvation of the incipient ion, metal-metal bonding, and electrostatic stabilization by image charge, with the latter two factors weakened by stronger positive biases. We also report simulations of the bias-dependence of defect generation relevant to nucleating corrosion by removing an atom from a perfect Ag(100) surface, which is predicted to occur via a vacancy-adatom intermediate. Together, these experiments and calculations provide the first validated, accurate, molecular model of the central steps that govern the rates of important dissolution/deposition reactions broadly relevant across the energy sciences.

3.
J Am Chem Soc ; 146(5): 3438-3448, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38288948

RESUMO

Concentrated water-in-salt electrolytes (WiSEs) are used in aqueous batteries and to control electrochemical reactions for fuel production. The hydrogen evolution reaction is a parasitic reaction at the negative electrode that limits cell voltage in WiSE batteries and leads to self-discharge, and affects selectivity for electrosynthesis. Mitigating and modulating these processes is hampered by a limited fundamental understanding of HER kinetics in WiSEs. Here, we quantitatively assess how thermodynamics, kinetics, and interface layers control the apparent HER activities in 20 m LiTFSI. When the LiTFSI concentration is increased from 1 to 20 m, an increase in proton activity causes a positive shift in the HER equilibrium potential of 71 mV. The exchange current density, io, derived from the HER branch for 20 m LiTFSI in 98% purity (0.56 ± 0.05 µA/cmPt2), however, is 8 times lower than for 20 m LiTFSI in 99.95% (4.7 ± 0.2 µA/cmPt2) and 32 times lower than for 1 m LiTFSI in 98% purity (18 ± 1 µA/cmPt2), demonstrating that the WiSE's impurities and concentration are both central in significantly suppressing HER kinetics. The ability and applicability of the reported methods are extended by examining additional WiSEs formulations made of acetates and nitrates.

4.
STAR Protoc ; 4(4): 102606, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37924520

RESUMO

Renewable energy-driven bipolar membrane water electrolyzers (BPMWEs) are a promising technology for sustainable production of hydrogen from seawater and other impure water sources. Here, we present a protocol for assembling BPMWEs and operating them in a range of water feedstocks, including ultra-pure deionized water and seawater. We describe steps for membrane electrode assembly preparation, electrolyzer assembly, and electrochemical evaluation. For complete details on the use and execution of this protocol, please refer to Marin et al. (2023).1.


Assuntos
Água , Membranas
5.
Nat Commun ; 14(1): 7688, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001061

RESUMO

Fe-containing transition-metal (oxy)hydroxides are highly active oxygen-evolution reaction (OER) electrocatalysts in alkaline media and ubiquitously form across many materials systems. The complexity and dynamics of the Fe sites within the (oxy)hydroxide have slowed understanding of how and where the Fe-based active sites form-information critical for designing catalysts and electrolytes with higher activity and stability. We show that where/how Fe species in the electrolyte incorporate into host Ni or Co (oxy)hydroxides depends on the electrochemical history and structural properties of the host material. Substantially less Fe is incorporated from Fe-spiked electrolyte into Ni (oxy)hydroxide at anodic potentials, past the nominally Ni2+/3+ redox wave, compared to during potential cycling. The Fe adsorbed under constant anodic potentials leads to impressively high per-Fe OER turn-over frequency (TOFFe) of ~40 s-1 at 350 mV overpotential which we attribute to under-coordinated "surface" Fe. By systematically controlling the concentration of surface Fe, we find TOFFe increases linearly with the Fe concentration. This suggests a changing OER mechanism with increased Fe concentration, consistent with a mechanism involving cooperative Fe sites in FeOx clusters.

6.
Nano Lett ; 22(23): 9493-9499, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36382908

RESUMO

Semiconductor photocatalyst particles convert solar energy to fuels like H2. The particles are often assumed to provide crystalline-facet-dependent electron-hole separation. A common strategy is to deposit a hydrogen evolution reaction (HER) electrocatalyst on electron-selective facets and an oxygen evolution reaction (OER) electrocatalyst on hole-selective facets. A precise understanding of how charge-carrier-selective contacts emerge and how they are rationally designed, however, is missing. Using a combination of ex situ and in situ conducting atomic force microscopy (AFM) experiments and new ionomer/catalyst-semiconductor test structures, we show how heterogeneity in charge-carrier selectivity can be measured at the nanoscale. We discover that the presence of the water/electrolyte interface is critical to induce hole selectivity between the CoOx water-oxidation catalyst and the BiVO4 light absorber. pH-dependent measurements suggest that negative surface charge on the semiconductor is central to inducing hole selectivity. The work also demonstrates a new approach to control local pH and introduce water using thin-film ionomers compatible with conductive AFM measurements.

7.
Nat Commun ; 13(1): 3846, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35788131

RESUMO

Water dissociation (WD, H2O → H+ + OH-) is the core process in bipolar membranes (BPMs) that limits energy efficiency. Both electric-field and catalytic effects have been invoked to describe WD, but the interplay of the two and the underlying design principles for WD catalysts remain unclear. Using precise layers of metal-oxide nanoparticles, membrane-electrolyzer platforms, materials characterization, and impedance analysis, we illustrate the role of electronic conductivity in modulating the performance of WD catalysts in the BPM junction through screening and focusing the interfacial electric field and thus electrochemical potential gradients. In contrast, the ionic conductivity of the same layer is not a significant factor in limiting performance. BPM water electrolyzers, optimized via these findings, use ~30-nm-diameter anatase TiO2 as an earth-abundant WD catalyst, and generate O2 and H2 at 500 mA cm-2 with a record-low total cell voltage below 2 V. These advanced BPMs might accelerate deployment of new electrodialysis, carbon-capture, and carbon-utilization technology.

8.
Adv Mater ; 34(35): e2203033, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35790033

RESUMO

Anion-exchange-membrane water electrolyzers (AEMWEs) in principle operate without soluble electrolyte using earth-abundant catalysts and cell materials and thus lower the cost of green H2 . Current systems lack competitive performance and the durability needed for commercialization. One critical issue is a poor understanding of catalyst-specific degradation processes in the electrolyzer. While non-platinum-group-metal (non-PGM) oxygen-evolution catalysts show excellent performance and durability in strongly alkaline electrolyte, this has not transferred directly to pure-water AEMWEs. Here, AEMWEs with five non-PGM anode catalysts are built and the catalysts' structural stability and interactions with the alkaline ionomer are characterized during electrolyzer operation and post-mortem. The results show catalyst electrical conductivity is one key to obtaining high-performing systems and that many non-PGM catalysts restructure during operation. Dynamic Fe sites correlate with enhanced degradation rates, as does the addition of soluble Fe impurities. In contrast, electronically conductive Co3 O4 nanoparticles (without Fe in the crystal structure) yield AEMWEs from simple, standard preparation methods, with performance and stability comparable to IrO2 . These results reveal the fundamental dynamic catalytic processes resulting in AEMWE device failure under relevant conditions, demonstrate a viable non-PGM catalyst for AEMWE operation, and illustrate underlying design rules for engineering anode catalyst/ionomer layers with higher performance and durability.

9.
Nat Commun ; 13(1): 3609, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750665

RESUMO

In alkaline and neutral MEA CO2 electrolyzers, CO2 rapidly converts to (bi)carbonate, imposing a significant energy penalty arising from separating CO2 from the anode gas outlets. Here we report a CO2 electrolyzer uses a bipolar membrane (BPM) to convert (bi)carbonate back to CO2, preventing crossover; and that surpasses the single-pass utilization (SPU) limit (25% for multi-carbon products, C2+) suffered by previous neutral-media electrolyzers. We employ a stationary unbuffered catholyte layer between BPM and cathode to promote C2+ products while ensuring that (bi)carbonate is converted back, in situ, to CO2 near the cathode. We develop a model that enables the design of the catholyte layer, finding that limiting the diffusion path length of reverted CO2 to ~10 µm balances the CO2 diffusion flux with the regeneration rate. We report a single-pass CO2 utilization of 78%, which lowers the energy associated with downstream separation of CO2 by 10× compared with past systems.

10.
Faraday Discuss ; 236(0): 58-70, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35506988

RESUMO

Interactions between a transition metal (oxide) catalyst and a support can tailor the number and nature of active sites, for instance in the methanol oxidation reaction. We here use ambient pressure X-ray photoelectron spectroscopy (AP-XPS) to identify and compare the surface adsorbates that form on amorphous metal oxide films that maximize such interactions. Considering Al(1-x)MxOy (M = Fe or Mn) films at a range of methanol : oxygen gas ratios and temperatures, we find that the redox-active transition metal site (characterized by methoxy formation) dominates dissociative methanol adsorption, while basic oxygen sites (characterized by carbonate formation) play a lesser role. Product detection, however, indicates complete oxidation to carbon dioxide and water with partial oxidation products (dimethyl ether) comprising a minor species. Comparing the intensity of methoxy and hydroxyl features at a fixed XPS chemical shift suggests methanol deprotonation during adsorption in oxygen rich conditions for high transition metal content. However, increasing methanol partial pressure and lower metal site density may promote oxygen vacancy formation and the dehydroxylation pathway, supported by a nominal reduction in the oxidation state of iron sites. These findings illustrate that AP-XPS and mass spectrometry together are powerful tools in understanding metal-support interactions, quantifying and probing the nature of catalytic active sites, and considering the link between electronic structure of materials and their catalytic activity.

11.
ACS Appl Mater Interfaces ; 14(16): 18261-18274, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35435656

RESUMO

Among existing water electrolysis (WE) technologies, anion-exchange-membrane water electrolyzers (AEMWEs) show promise for low-cost operation enabled by the basic solid-polymer electrolyte used to conduct hydroxide ions. The basic environment within the electrolyzer, in principle, allows the use of non-platinum-group metal catalysts and less-expensive cell components compared to acidic-membrane systems. Nevertheless, AEMWEs are still underdeveloped, and the degradation and failure modes are not well understood. To improve performance and durability, supporting electrolytes such as KOH and K2CO3 are often added to the water feed. The effect of the anion interactions with the ionomer membrane (particularly other than OH-), however, remains poorly understood. We studied three commercial anion-exchange ionomers (Aemion, Sustainion, and PiperION) during oxygen evolution (OER) at oxidizing potentials in several supporting electrolytes and characterized their chemical stability with surface-sensitive techniques. We analyzed factors including the ionomer conductivity, redox potential, and pH tolerance to determine what governs ionomer stability during OER. Specifically, we discovered that the oxidation of Aemion at the electrode surface is favored in the presence of CO32-/HCO3- anions perhaps due to the poor conductivity of that ionomer in the carbonate/bicarbonate form. Sustainion tends to lose its charge-carrying groups as a result of electrochemical degradation favored in basic electrolytes. PiperION seems to be similarly negatively affected by a pH drop and low carbonate/bicarbonate conductivity under the applied oxidizing potential. The insight into the interactions of the supporting electrolyte anions with the ionomer/membrane helps shed light on some of the degradation pathways possible inside of the AEMWE and enables the informed design of materials for water electrolysis.

12.
ACS Appl Mater Interfaces ; 13(44): 51917-51924, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34374278

RESUMO

Water electrolysis powered by renewable electricity produces green hydrogen and oxygen gas, which can be used for energy, fertilizer, and industrial applications and thus displace fossil fuels. Pure-water anion-exchange-membrane (AEM) electrolyzers in principle offer the advantages of commercialized proton-exchange-membrane systems (high current density, low cross over, output gas compression, etc.) while enabling the use of less-expensive steel components and nonprecious metal catalysts. AEM electrolyzer research and development, however, has been limited by the lack of broadly accessible materials that provide consistent cell performance, making it difficult to compare results across studies. Further, even when the same materials are used, different pretreatments and electrochemical analysis techniques can produce different results. Here, we report an AEM electrolyzer comprising commercially available catalysts, membrane, ionomer, and gas-diffusion layers operating near 1.9 V at 1 A cm-2 in pure water. After the initial break in, the performance degraded by 0.67 mV h-1 at 0.5 A cm-2 at 55 °C. We detail the key preparation, assembly, and operation techniques employed and show further performance improvements using advanced materials as a proof-of-concept for future AEM-electrolyzer development. The data thus provide an easily reproducible and comparatively high-performance baseline that can be used by other laboratories to calibrate the performance of improved cell components, nonprecious metal oxygen evolution, and hydrogen evolution catalysts and learn how to mitigate degradation pathways.

13.
iScience ; 24(5): 102481, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34027325

RESUMO

Electrochemistry is an established discipline with modern frontiers spanning energy conversion and storage, neuroscience, and organic synthesis. In spite of the expanding opportunities for academic and industrial electrochemists, particularly in the growing energy-storage sector, rigorous training of electrochemists is generally lacking at academic institutions in the United States. In this perspective, we highlight the core concepts of electrochemistry and discuss ways in which it has been historically taught. We identify challenges faced when teaching inherently interdisciplinary electrochemical concepts and discuss how technology provides new tools for teaching, such as inexpensive electronics and open-source software, to help address these challenges. Finally, we outline example programs and discuss how new tools and approaches can be brought together to prepare scientists and engineers for careers in electrochemical technology where they can accelerate the research, development, and deployment of the clean energy technology essential to combat climate change in the coming decades.

14.
Nano Lett ; 21(1): 492-499, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33258608

RESUMO

Developing low-cost and efficient electrocatalysts to accelerate oxygen evolution reaction (OER) kinetics is vital for water and carbon-dioxide electrolyzers. The fastest-known water oxidation catalyst, Ni(Fe)OxHy, usually produced through an electrochemical reconstruction of precatalysts under alkaline condition, has received substantial attention. However, the reconstruction in the reported catalysts usually leads to a limited active layer and poorly controlled Fe-activated sites. Here, we demonstrate a new electrochemistry-driven F-enabled surface-reconstruction strategy for converting the ultrathin NiFeOxFy nanosheets into an Fe-enriched Ni(Fe)OxHy phase. The activated electrocatalyst shows a low OER overpotential of 218 ± 5 mV at 10 mA cm-2 and a low Tafel slope of 31 ± 4 mV dec-1, which is among the best for NiFe-based OER electrocatalysts. Such superior performance is caused by the effective formation of the Fe-enriched Ni(Fe)OxHy active-phase that is identified by operando Raman spectroscopy and the substantially improved surface wettability and gas-bubble-releasing behavior.

15.
Science ; 369(6507): 1099-1103, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32616669

RESUMO

Catalyzing water dissociation (WD) into protons and hydroxide ions is important both for fabricating bipolar membranes (BPMs) that can couple different pH environments into a single electrochemical device and for accelerating electrocatalytic reactions that consume protons in neutral to alkaline media. We designed a BPM electrolyzer to quantitatively measure WD kinetics and show that, for metal nanoparticles, WD activity correlates with alkaline hydrogen evolution reaction activity. By combining metal-oxide WD catalysts that are efficient near the acidic proton-exchange layer with those efficient near the alkaline hydroxide-exchange layer, we demonstrate a BPM driving WD with overpotentials of <10 mV at 20 mA·cm-2 and pure water BPM electrolyzers that operate with an alkaline anode and acidic cathode at 500 mA·cm-2 with a total electrolysis voltage of ~2.2 V.

16.
Nat Mater ; 19(1): 69-76, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31591528

RESUMO

Semiconductor structures (for example, films, wires, particles) used in photoelectrochemical devices are often decorated with nanoparticles that catalyse fuel-forming reactions, including water oxidation, hydrogen evolution or carbon-dioxide reduction. For high performance, the catalyst nanoparticles must form charge-carrier-selective contacts with the underlying light-absorbing semiconductor, facilitating either hole or electron transfer while inhibiting collection of the opposite carrier. Despite the key role played by such selective contacts in photoelectrochemical energy conversion and storage, the underlying nanoscale interfaces are poorly understood because direct measurement of their properties is challenging, especially under operating conditions. Using an n-Si/Ni photoanode model system and potential-sensing atomic force microscopy, we measure interfacial electron-transfer processes and map the photovoltage generated during photoelectrochemical oxygen evolution at nanoscopic semiconductor/catalyst interfaces. We discover interfaces where the selectivity of low-Schottky-barrier n-Si/Ni contacts for holes is enhanced via a nanoscale size-dependent pinch-off effect produced when surrounding high-barrier regions develop during device operation. These results thus demonstrate (1) the ability to make nanoscale operando measurements of contact properties under practical photoelectrochemical conditions and (2) a design principle to control the flow of electrons and holes across semiconductor/catalyst junctions that is broadly relevant to different photoelectrochemical devices.

17.
Chemphyschem ; 20(22): 3089-3095, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31287609

RESUMO

FeOx Hy and Fe-containing Ni/Co oxyhydroxides are the most-active catalysts for the oxygen evolution reaction (OER) in alkaline media. However, the activity of Fe sites appears strongly dependent on the electrode-substrate material and/or the elemental composition of the matrix in which it is embedded. A fundamental understanding of these interactions that modulate the OER activity of FeOx Hy is lacking. We report the use of cyclic voltammetry and chronopotentiometry to assess the substrate-dependent activity of FeOx Hy on a number of commonly used electrode substrates, including Au, Pt, Pd, Cu, and C. We also evaluate the OER activity and Tafel behavior of these metallic substrates in 1 M KOH aqueous solution with Fe3+ and other electrolyte impurities. We find that the OER activity of FeOx Hy varies by substrate in the order Au>Pd≈Pt≈Cu>C. The trend may be caused by differences in the adsorption strength of the Fe oxo ion on the substrate, where a stronger adhesion results in more adsorbed Fe at the interface during steady-state OER and possibly a decreased charge-transfer resistance at the FeOx Hy -substrate interface. These results suggest that the local atomic and electronic structure of [FeO6 ] units play an important role in catalysis of the OER as the activity can be tuned substantially by substrate interactions.

19.
ACS Appl Mater Interfaces ; 11(6): 5590-5594, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29708339

RESUMO

Metal (oxy)hydroxides (MO xH y, M = Fe, Co, Ni, and mixtures thereof) are important materials in electrochemistry. In particular, MO xH y are the fastest known catalysts for the oxygen evolution reaction (OER) in alkaline media. While key descriptors such as overpotentials and activity have been thoroughly characterized, the nanostructure and its dynamics under electrochemical conditions are not yet fully understood. Here, we report on the structural evolution of Ni1-δCoδO xH y nanosheets with varying ratios of Ni to Co, in operando using atomic force microscopy during electrochemical cycling. We found that the addition of Co to NiO xH y nanosheets results in a higher porosity of the as-synthesized nanosheets, apparently reducing mechanical stress associated with redox cycling and hence enhancing stability under electrochemical conditions. As opposed to nanosheets composed of pure NiO xH y, which dramatically reorganize under electrochemical conditions to form nanoparticle assemblies, restructuring is not found for Ni1-δCoδO xH y with a high Co content. Ni0.8Fe0.2O xH y nanosheets show high roughness as-synthesized which increases during electrochemical cycling while the integrity of the nanosheet shape is maintained. These findings enhance the fundamental understanding of MO xH y materials and provide insight into how nanostructure and composition affect structural dynamics at the nanoscale.

20.
J Am Chem Soc ; 141(4): 1394-1405, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30537811

RESUMO

Solar water splitting provides a mechanism to convert and store solar energy in the form of stable chemical bonds. Water-splitting systems often include semiconductor photoanodes, such as n-Fe2O3 and n-BiVO4, which use photogenerated holes to oxidize water. These photoanodes often exhibit improved performance when coated with metal-oxide/(oxy)hydroxide overlayers that are catalytic for the water-oxidation reaction. The mechanism for this improvement, however, remains a controversial topic. This is, in part, due to a lack of experimental techniques that are able to directly track the flow of photogenerated holes in such multicomponent systems. In this Perspective, we illustrate how this issue can be addressed by using a second working electrode to make direct current/voltage measurements on the catalytic overlayer during operation in a photoelectrochemical cell. We discuss examples where the second working electrode is a thin metallic film deposited on the catalyst layer, as well as where it is the tip of a conducting atomic-force-microscopy probe. In applying these techniques to multiple semiconductors (Fe2O3, BiVO4, Si) paired with various metal-(oxy)hydroxide overlayers (e.g., Ni(Fe)O xH y and CoO xH y), we found in all cases investigated that the overlayers collect photogenerated holes from the semiconductor, charging to potentials sufficient to drive water oxidation. The overlayers studied thus form charge-separating heterojunctions with the semiconductor as well as serve as water-oxidation catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA