Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38133020

RESUMO

We report the development of multifunctional core/shell chemical vapor deposition diamond nanoparticles for the local photoinduced hyperthermia, thermometry, and fluorescent imaging. The diamond core heavily doped with boron is heated due to absorbed laser radiation and in turn heats the shell of a thin transparent diamond layer with embedded negatively charged SiV color centers emitting intense and narrowband zero-phonon lines with a temperature-dependent wavelength near 738 nm. The heating of the core/shell diamond nanoparticle is indicated by the temperature-induced spectral shift in the intensive zero-phonon line of the SiV color centers embedded in the diamond shell. The temperature of the core/shell diamond particles can be precisely manipulated by the power of the incident light. At laser power safe for biological systems, the photoinduced temperature of the core/shell diamond nanoparticles is high enough to be used for hyperthermia therapy and local nanothermometry, while the high zero-phonon line intensity of the SiV color centers allows for the fluorescent imaging of treated areas.

2.
Materials (Basel) ; 15(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36500012

RESUMO

Recently, nanodiamonds with negatively charged luminescent color centers based on atoms of the fourth group (SiV-, GeV-) have been proposed for use as biocompatible luminescent markers. Further improvement of the functionality of such systems by expanding the frequencies of the emission can be achieved by the additional formation of luminescent tungsten complexes in the diamond matrix. This paper reports the creation of diamond matrices by a hot filament chemical vapor deposition method, containing combinations of luminescing Si-V and Ge-V color centers and tungsten complexes. The possibility is demonstrated of creating a multicolor light source combining the luminescence of all embedded emitters. The emission properties of tungsten complexes and Si-V and Ge-V color centers in the diamond matrices were investigated, as well as differences in their luminescent properties and electron-phonon interaction at different temperatures.

3.
Materials (Basel) ; 15(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35897629

RESUMO

Surface-enhanced Raman spectroscopy (SERS) is regarded as a versatile tool for studying the composition and structure of matter. This work has studied the preparation of a SERS substrate based on a self-assembling plasmonic nanoparticle film (SPF) in a polymer matrix. Several synthesis parameters for the SPF are investigated, including the size of the particles making up the film and the concentration and type of the self-assembling agent. The result of testing systems with different characteristics is discussed using a model substance (pseudoisocyanin iodide). These models can be useful in the study of biology and chemistry. Research results contain the optimal parameters for SPF synthesis, maximizing the SERS signal. The optimal procedure for SPF assembly is determined and used for the synthesis of composite SPFs within different polymer matrices. SPF in a polymer matrix is necessary for the routine use of the SERS substrate for various types of analytes, including solid samples or those sensitive to contamination. Polystyrene, polyvinyl alcohol (PVA), and polyethylene are investigated to obtain a polymer matrix for SPF, and various methods of incorporating SPF into a polymer matrix are being explored. It is found that films with the best signal enhancement and reproducibility were obtained in polystyrene. The minimum detectable concentration for the SERS substrate obtained is equal to 10-10 M. We prepared a SERS substrate with an analytical enhancement factor of 2.7 × 104, allowing an increase in the detection sensitivity of analyte solutions of five orders of magnitude.

4.
Materials (Basel) ; 15(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35629616

RESUMO

The investigation of the hot filament chemical vapor deposition nanodiamonds with simultaneously embedded luminescent GeV- and SiV- color centers from solid sources showed that both the absolute and relative intensities of their zero-phonon lines (at 602 and 738 nm) depend on nanodiamond growth conditions (a methane concentration in the CH4/H2 gas mixture, growth temperature, and time). It is shown that a controlled choice of parameters of hot filament chemical vapor deposition synthesis makes it possible to select the optimal synthesis conditions for tailoring bicolor fluorescence nanodiamond labels for imaging biological systems.

5.
Nanomaterials (Basel) ; 11(11)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34835578

RESUMO

The negatively charged germanium-vacancy GeV- color centers in diamond nanocrystals are solid-state photon emitters suited for quantum information technologies, bio-sensing, and labeling applications. Due to the small Huang-Rhys factor, the GeV--center zero-phonon line emission is expected to be very intensive and spectrally narrow. However, structural defects and the inhomogeneous distribution of local strains in the nanodiamonds result in the essential broadening of the ZPL. Therefore, clarification and elimination of the reasons for the broadening of the GeV- center ZPL is an important problem. We report on the effect of reactive ion etching in oxygen plasma on the structure and luminescence properties of nanodiamonds grown by hot filament chemical vapor deposition. Emission of GeV- color centers ensembles at about 602 nm in as-grown and etched nanodiamonds is probed using micro-photoluminescence and micro-Raman spectroscopy at room and liquid nitrogen temperature. We show that the etching removes the nanodiamond surface sp2-induced defects resulting in a reduction in the broad luminescence background and a narrowing of the diamond Raman band. The zero-phonon luminescence band of the ensemble of the GeV- centers is a superposition of narrow lines originated most likely from the GeV- center sub-ensembles under different uniaxial local strain conditions.

6.
Nanoscale Res Lett ; 15(1): 209, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33169178

RESUMO

We demonstrate a high-pressure, high-temperature sintering technique to form nitrogen-vacancy-nitrogen centres in nanodiamonds. Polycrystalline diamond nanoparticle precursors, with mean size of 25 nm, are produced by the shock wave from an explosion. These nanoparticles are sintered in the presence of ethanol, at a pressure of 7 GPa and temperature of 1300 °C, to produce substantially larger (3-4 times) diamond crystallites. The recorded spectral properties demonstrate the improved crystalline quality. The types of defects present are also observed to change; the characteristic spectral features of nitrogen-vacancy and silicon-vacancy centres present for the precursor material disappear. Two new characteristic features appear: (1) paramagnetic substitutional nitrogen (P1 centres with spin ½) with an electron paramagnetic resonance characteristic triplet hyperfine structure due to the I = 1 magnetic moment of the nitrogen nuclear spin and (2) the green spectral photoluminescence signature of the nitrogen-vacancy-nitrogen centres. This production method is a strong alternative to conventional high-energy particle beam irradiation. It can be used to easily produce purely green fluorescing nanodiamonds with advantageous properties for optical biolabelling applications.

7.
Nanomaterials (Basel) ; 10(4)2020 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32290368

RESUMO

Hybrid nanomaterials based on graphene and PbS quantum dots (QDs) have demonstrated promising applications in optoelectronics. However, the formation of high-quality large-area hybrid films remains technologically challenging. Here, we demonstrate that ligand-assisted self-organization of covalently bonded PbS QDs and reduced graphene oxide (rGO) can be utilized for the formation of highly uniform monolayers. After the post-deposition ligand exchange, these films demonstrated high conductivity and photoresponse. The obtained films demonstrate a remarkable improvement in morphology and charge transport compared to those obtained by the spin-coating method. It is expected that these materials might find a range of applications in photovoltaics and optoelectronics.

8.
Nanoscale ; 12(2): 602-609, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31828268

RESUMO

Carbon dots (CDs) are luminescent nanomaterials, with potential use in bioimaging and sensorics. Here, the influence of the surrounding solvent media on the optical properties of CDs synthesized from the most commonly employed precursors, namely citric acid and ethylenediamine, is investigated. The position of optical transitions of CDs can be tuned by the change of pH and solvent polarity. The most striking observation is related to the interaction of CDs with chlorine containing solvents, which results in resolving a set of narrow peaks within both the absorption and PL bands, similar to those observed for polycyclic aromatic hydrocarbons or organic dyes. We assume that the chlorine containing molecules penetrate the surface layers of CDs, which results in an increase of the distance between the luminescent centers; this correlates well with an enhanced D-band in their Raman spectra. A model of CDs composed of a matrix of hydrogenated amorphous carbon with the inclusions of sp2-domains formed by polycyclic aromatic hydrocarbons and their derivatives is suggested; the latter are stacked ensembles of the luminophores and are considered as the origin of the emission of CDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA