RESUMO
PURPOSE: Families living with mitochondrial diseases (MD) often endure prolonged diagnostic journeys and invasive testing, yet many remain without a molecular diagnosis. The Australian Genomics Mitochondrial flagship, comprising clinicians, diagnostic, and research scientists, conducted a prospective national study to identify the diagnostic utility of singleton genomic sequencing using blood samples. METHODS: 140 children and adults living with suspected MD were recruited using modified Nijmegen criteria (MNC) and randomized to either exome + mtDNA sequencing (ES+mtDNAseq) or genome sequencing (GS). RESULTS: Diagnostic yield was 55% (n=77) with variants in nuclear (n=37) and mtDNA (n=18) MD genes, as well as phenocopy genes (n=22). A nuclear gene etiology was identified in 77% of diagnoses, irrespective of disease onset. Diagnostic rates were higher in pediatric-onset (71%) than adult-onset (31%) cases, and comparable in children with non-European (78%) versus European (67%) ancestry. For children, higher MNC scores correlated with increased diagnostic yield and fewer diagnoses in phenocopy genes. Additionally, three adult patients had a mtDNA deletion discovered in skeletal muscle that was not initially identified in blood. CONCLUSION: Genomic sequencing from blood can simplify the diagnostic pathway for individuals living with suspected MD, especially those with childhood onset diseases and high MNC scores.
RESUMO
PURPOSE: To develop and evaluate a scalable national program to build confidence, competence and capability in the use of rapid genomic testing (rGT) in the acute pediatric setting. METHODS: We used theory-informed approaches to design a modular, adaptive program of blended learning aimed at diverse professional groups involved in acute pediatric care. The program comprised 4 online learning modules and an online workshop and was centered on case-based learning. We evaluated the program using the Kirkpatrick 4-level model of training evaluation and report our findings using the Reporting Item Standards for Education and its Evaluation (RISE2) guidelines for genomics education and evaluation. RESULTS: Two hundred and two participants engaged with at least 1 component of the program. Participants self-reported increased confidence in using rGT, (P < .001), and quiz responses objectively demonstrated increased competence (eg, correct responses to a question on pretest counseling increased from 30% to 64%; P < .001). Additionally, their capability in applying genomic principles to simulated clinical cases increased (P < .001), as did their desire to take on more responsibility for performing rGT. The clinical interpretation of more complex test results (such as negative results or variants of uncertain significance) appeared to be more challenging, indicating a need for targeted education in this area. CONCLUSION: The program format was effective in delivering multidisciplinary and wide-scale genomics education in the acute care context. The modular approach we have developed now lends itself to application in other medical specialties or areas of health care.
Assuntos
Genômica , Pediatria , Humanos , Genômica/educação , Genômica/métodos , Pediatria/educação , Competência Clínica , Testes Genéticos/métodos , Masculino , Feminino , Currículo , CriançaRESUMO
This study aimed to determine the diagnostic yield of singleton exome sequencing and subsequent research-based trio exome analysis in children with a spectrum of brain malformations seen commonly in clinical practice. We recruited children ≤ 18 years old with a brain malformation diagnosed by magnetic resonance imaging and consistent with an established list of known genetic causes. Patients were ascertained nationally from eight tertiary paediatric centres as part of the Australian Genomics Brain Malformation Flagship. Chromosome microarray was required for all children, and those with pathogenic copy number changes were excluded. Cytomegalovirus polymerase chain reaction on neonatal blood spots was performed on all children with polymicrogyria with positive patients excluded. Singleton exome sequencing was performed through a diagnostic laboratory and analysed using a clinical exome sequencing pipeline. Undiagnosed patients were followed up in a research setting, including reanalysis of the singleton exome data and subsequent trio exome sequencing. A total of 102 children were recruited. Ten malformation subtypes were identified with the commonest being polymicrogyria (36%), pontocerebellar hypoplasia (14%), periventricular nodular heterotopia (11%), tubulinopathy (10%), lissencephaly (10%) and cortical dysplasia (9%). The overall diagnostic yield for the clinical singleton exome sequencing was 36%, which increased to 43% after research follow-up. The main source of increased diagnostic yield was the reanalysis of the singleton exome data to include newly discovered gene-disease associations. One additional diagnosis was made by trio exome sequencing. The highest phenotype-based diagnostic yields were for cobblestone malformation, tubulinopathy and lissencephaly and the lowest for cortical dysplasia and polymicrogyria. Pathogenic variants were identified in 32 genes, with variants in 6/32 genes occurring in more than one patient. The most frequent genetic diagnosis was pathogenic variants in TUBA1A. This study shows that over 40% of patients with common brain malformations have a genetic aetiology identified by exome sequencing. Periodic reanalysis of exome data to include newly identified genes was of greater value in increasing diagnostic yield than the expansion to trio exome. This study highlights the genetic and phenotypic heterogeneity of brain malformations, the importance of a multidisciplinary approach to diagnosis and the large number of patients that remain without a genetic diagnosis despite clinical exome sequencing and research reanalysis.
RESUMO
BACKGROUND: Health care professionals play a central role in offering reproductive genetic carrier screening but face challenges when integrating the offer into practice. The aim of this study was to design, execute, and evaluate theory-informed implementation strategies to support health care professionals in offering carrier screening. METHODS: An exploratory multi-method approach was systematically employed based on the Theoretical Domain Framework (TDF). Implementation strategies were designed by aligning TDF barriers reported by health care professionals involved in a large carrier screening study, to behaviour change techniques combined with study genetic counsellors' experiential knowledge. The strategies were trialled with a subset of health care professionals and evaluated against controls, using findings from questionnaires and interviews with healthcare professionals. The primary outcome measure was the number of couples who initiated enrolment. RESULTS: Health care professionals (n = 151) reported barriers in the TDF Domains of skills, e.g., lack of practice in offering screening, and challenges of environmental context and resources, e.g., lack of time, which informed the design of a skills video and a waiting room poster using the TDF-behaviour change technique linking tool. Following implementation, (Skills video n = 29 vs control n = 31 and Poster n = 46 vs control n = 34) TDF barrier scores decreased across all groups and little change was observed in the primary outcome measure. The skills video, though welcomed by health care professionals, was reportedly too long at seven minutes. The waiting room poster was seen as easily implementable. CONCLUSIONS: As carrier screening moves towards mainstream healthcare, health care professionals report barriers to offering screening. To meet their needs, developing and testing experiential and theory-informed strategies that acknowledge contextual factors are essential.
Assuntos
Atenção à Saúde , Pessoal de Saúde , Humanos , Triagem de Portadores Genéticos , AustráliaRESUMO
Critically ill infants and children with rare diseases need equitable access to rapid and accurate diagnosis to direct clinical management. Over 2 years, the Acute Care Genomics program provided whole-genome sequencing to 290 families whose critically ill infants and children were admitted to hospitals throughout Australia with suspected genetic conditions. The average time to result was 2.9 d and diagnostic yield was 47%. We performed additional bioinformatic analyses and transcriptome sequencing in all patients who remained undiagnosed. Long-read sequencing and functional assays, ranging from clinically accredited enzyme analysis to bespoke quantitative proteomics, were deployed in selected cases. This resulted in an additional 19 diagnoses and an overall diagnostic yield of 54%. Diagnostic variants ranged from structural chromosomal abnormalities through to an intronic retrotransposon, disrupting splicing. Critical care management changed in 120 diagnosed patients (77%). This included major impacts, such as informing precision treatments, surgical and transplant decisions and palliation, in 94 patients (60%). Our results provide preliminary evidence of the clinical utility of integrating multi-omic approaches into mainstream diagnostic practice to fully realize the potential of rare disease genomic testing in a timely manner.
Assuntos
Estado Terminal , Doenças Raras , Lactente , Criança , Humanos , Doenças Raras/diagnóstico , Doenças Raras/genética , Doenças Raras/terapia , Multiômica , Sequenciamento Completo do Genoma/métodos , Sequenciamento do ExomaRESUMO
AIM: To assess the clinical utility of exome sequencing for patients with developmental and epileptic encephalopathies (DEEs). METHOD: Over 2 years, patients with DEEs were recruited for singleton exome sequencing. Parental segregation was performed where indicated. RESULTS: Of the 103 patients recruited (54 males, 49 females; aged 2 weeks-17 years), the genetic aetiology was identified in 36 out of 103 (35%) with management implications in 13 out of 36. Exome sequencing revealed pathogenic or likely pathogenic variants in 30 out of 103 (29%) patients, variants of unknown significance in 39 out of 103 (38%), and 34 out of 103 (33%) were negative on exome analysis. After the description of new genetic diseases, a molecular diagnosis was subsequently made for six patients or through newly available high-density chromosomal microarray testing. INTERPRETATION: We demonstrate the utility of exome sequencing in routine clinical care of children with DEEs. We highlight that molecular diagnosis often leads to changes in management and informs accurate prognostic and reproductive counselling. Our findings reinforce the need for ongoing analysis of genomic data to identify the aetiology in patients in whom the cause is unknown. The implementation of genomic testing in the care of children with DEEs should become routine in clinical practice. WHAT THIS PAPER ADDS: The cause was identified in 35% of patients with developmental and epileptic encephalopathies. KCNQ2, CDKL5, SCN1A, and STXBP1 were the most frequently identified genes. Reanalysis of genomic data found the cause in an additional six patients. Genetic aetiology was identified in 41% of children with seizure onset under 2 years, compared to 18% with older onset. Finding the molecular cause led to management changes in 36% of patients with DEEs.
Assuntos
Exoma , Espasmos Infantis , Criança , Masculino , Feminino , Humanos , Exoma/genética , Sequenciamento do Exoma , Espasmos Infantis/genética , Convulsões/genéticaRESUMO
Reproductive genetic carrier screening (RGCS) provides people with information about their chance of having children with autosomal recessive or X-linked genetic conditions, enabling informed reproductive decision-making. RGCS is recommended to be offered to all couples during preconception or in early pregnancy. However, cost and a lack of awareness may prevent access. To address this, the Australian Government funded Mackenzie's Missionthe Australian Reproductive Genetic Carrier Screening Project. Mackenzie's Mission aims to assess the acceptability and feasibility of an easily accessible RGCS program, provided free of charge to the participant. In study Phase 1, implementation needs were mapped, and key study elements were developed. In Phase 2, RGCS is being offered by healthcare providers educated by the study team. Reproductive couples who provide consent are screened for over 1200 genes associated with >750 serious, childhood-onset genetic conditions. Those with an increased chance result are provided comprehensive genetic counseling support. Reproductive couples, recruiting healthcare providers, and study team members are also invited to complete surveys and/or interviews. In Phase 3, a mixed-methods analysis will be undertaken to assess the program outcomes, psychosocial implications and implementation considerations alongside an ongoing bioethical analysis and a health economic evaluation. Findings will inform the implementation of an ethically robust RGCS program.
RESUMO
Understanding and communicating genomic results can be challenging for families and health professionals without genetic specialty training. Unlike modifying existing laboratory reports, plain language genomic test reports provide an opportunity for patient/family-centered approaches. However, emerging examples generally lack co-design and/or evaluation in real-world settings. Through co-design involving patient groups, plain language experts, educators, and genetic health professionals, plain language genomic test report templates were produced for common test outcomes in rare diseases. Eight plain language genomic test report templates were developed. These reports were piloted and evaluated as part of a national pediatric ultra-rapid genomic testing program. Family and genetic health professional experiences with report layout, content, and use were explored using surveys. Of 154 families and 107 genetic health professionals issued with reports, 51 families and 57 clinicians responded (RR = 33% and 53%, respectively). Most families (82%) found their report helpful in understanding the result. Reports were shared by 63% of families, predominantly with family members (72%), or health professionals (68%). Clinicians (15%) adapted the reports for other settings. Through co-design, plain language genomic test reports implemented in a real-world setting can facilitate patient/family and caregiver understanding and communication of genomic test purpose, outcome, and potential clinical implications.
RESUMO
BACKGROUND: Children's interstitial and diffuse lung disease (chILD) is a complex heterogeneous group of lung disorders. Gene panel approaches have a reported diagnostic yield of ~ 12%. No data currently exist using trio exome sequencing as the standard diagnostic modality. We assessed the diagnostic utility of using trio exome sequencing in chILD. We prospectively enrolled children meeting specified clinical criteria between 2016 and 2020 from 16 Australian hospitals. Exome sequencing was performed with analysis of an initial gene panel followed by trio exome analysis. A subset of critically ill infants underwent ultra-rapid trio exome sequencing as first-line test. RESULTS: 36 patients [median (range) age 0.34 years (0.02-11.46); 11F] were recruited from multiple States and Territories. Five patients had clinically significant likely pathogenic/pathogenic variants (RARB, RPL15, CTCF, RFXANK, TBX4) and one patient had a variant of uncertain significance (VIP) suspected to contribute to their clinical phenotype, with VIP being a novel gene candidate. CONCLUSIONS: Trio exomes (6/36; 16.7%) had a better diagnostic rate than gene panel (1/36; 2.8%), due to the ability to consider a broader range of underlying conditions. However, the aetiology of chILD in most cases remained undetermined, likely reflecting the interplay between low penetrant genetic and environmental factors.
Assuntos
Exoma , Pneumopatias , Austrália , Exoma/genética , Hospitais , Humanos , Sequenciamento do ExomaRESUMO
OBJECTIVE: Research is needed to determine best practice for genomic testing in the context of child interstitial or diffuse lung disease (chILD). We explored parent's and child's health-related quality of life (HRQoL), parents' perceived understanding of a genomic testing study, satisfaction with information and the study and decisional regret to undertake genomic testing. METHODS: Parents of children with diagnosed or suspected chILD who were enrolled in a genomic sequencing study were invited to complete questionnaires pretesting (T1) and after receiving the result (T2). RESULTS: Parents' (T1, n=19; T2, n=17) HRQoL was lower than population norms. Study satisfaction (T1) and perceived understanding (T2) were positively correlated (rs=0.68, p=0.014). Satisfaction with information (T1 and T2) and decisional regret (T2) were negatively correlated (T1 rs=-0.71, p=0.01; T2 rs=-0.56, p=0.03). Parents reported wanting more frequent communication with staff throughout the genomic sequencing study, and greater information about the confidentiality of test results. CONCLUSIONS: Understanding of genomic testing, satisfaction with information and participation and decisional regret are inter-related. Pretest consultations are important and can allow researchers to explain confidentiality of data and the variable turnaround times for receiving a test result. Staff can also update parents when there will be delays to receiving a result.
Assuntos
Pneumopatias , Qualidade de Vida , Criança , Testes Genéticos , Humanos , Pais , Satisfação PessoalRESUMO
PURPOSE: Genetic variants causing aberrant premessenger RNA splicing are increasingly being recognized as causal variants in genetic disorders. In this study, we devise standardized practices for polymerase chain reaction (PCR)-based RNA diagnostics using clinically accessible specimens (blood, fibroblasts, urothelia, biopsy). METHODS: A total of 74 families with diverse monogenic conditions (31% prenatal-congenital onset, 47% early childhood, and 22% teenage-adult onset) were triaged into PCR-based RNA testing, with comparative RNA sequencing for 19 cases. RESULTS: Informative RNA assay data were obtained for 96% of cases, enabling variant reclassification for 75% variants that can be used for genetic counseling (71%), to inform clinical care (32%) and prenatal counseling (41%). Variant-associated mis-splicing was highly reproducible for 28 cases with samples from ≥2 affected individuals or heterozygotes and 10 cases with ≥2 biospecimens. PCR amplicons encompassing another segregated heterozygous variant was vital for clinical interpretation of 22 of 79 variants to phase RNA splicing events and discern complete from partial mis-splicing. CONCLUSION: RNA diagnostics enabled provision of a genetic diagnosis for 64% of recruited cases. PCR-based RNA diagnostics has capacity to analyze 81.3% of clinically significant genes, with long amplicons providing an advantage over RNA sequencing to phase RNA splicing events. The Australasian Consortium for RNA Diagnostics (SpliceACORD) provide clinically-endorsed, standardized protocols and recommendations for interpreting RNA assay data.
Assuntos
Splicing de RNA , RNA , Adolescente , Adulto , Pré-Escolar , Humanos , Mutação , RNA/genética , Splicing de RNA/genética , Análise de Sequência de RNA , Sequenciamento do ExomaRESUMO
Reproductive genetic carrier screening aims to offer couples information about their chance of having children with certain autosomal recessive and X-linked genetic conditions. We developed a gene list for use in "Mackenzie's Mission", a research project in which 10,000 couples will undergo screening. Criteria for selecting genes were: the condition should be life-limiting or disabling, with childhood onset, such that couples would be likely to take steps to avoid having an affected child; and/or be one for which early diagnosis and intervention would substantially change outcome. Strong evidence for gene-phenotype relationship was required. Candidate genes were identified from OMIM and via review of 23 commercial and published gene lists. Genes were reviewed by 16 clinical geneticists using a standard operating procedure, in a process overseen by a multidisciplinary committee which included clinical geneticists, genetic counselors, an ethicist, a parent of a child with a genetic condition and scientists from diagnostic and research backgrounds. 1300 genes met criteria. Genes associated with non-syndromic deafness and non-syndromic differences of sex development were not included. Our experience has highlighted that gene selection for a carrier screening panel needs to be a dynamic process with ongoing review and refinement.
Assuntos
Conferências de Consenso como Assunto , Triagem de Portadores Genéticos/métodos , Austrália , Triagem de Portadores Genéticos/estatística & dados numéricos , Predisposição Genética para Doença , Humanos , Locos de Características QuantitativasRESUMO
PURPOSE: To explore parental experiences of ultrarapid genomic testing for their critically unwell infants and children. METHODS: Parents of critically unwell children who participated in a national ultrarapid genomic diagnosis program were surveyed >12 weeks after genomic results return. Surveys consisted of custom questions and validated scales, including the Decision Regret Scale and Genomics Outcome Scale. RESULTS: With 96 survey invitations sent, the response rate was 57% (n = 55). Most parents reported receiving enough information during pretest (n = 50, 94%) and post-test (n = 44, 83%) counseling. Perceptions varied regarding benefits of testing, however most parents reported no or mild decision regret (n = 45, 82%). The majority of parents (31/52, 60%) were extremely concerned about the condition recurring in future children, regardless of actual or perceived recurrence risk. Parents whose child received a diagnostic result reported higher empowerment. CONCLUSION: This study provides valuable insight into parental experiences of ultrarapid genomic testing in critically unwell children, including decision regret, empowerment, and post-test reproductive planning, to inform design and delivery of rapid diagnosis programs. The findings suggest considerations for pre- and post-test counseling that may influence parental experiences during the testing process and beyond, such as the importance of realistically conveying the likelihood for clinical and/or personal utility.
Assuntos
Emoções , Pais , Criança , Aconselhamento , Testes Genéticos , Humanos , Lactente , Inquéritos e QuestionáriosRESUMO
Importance: Widespread adoption of rapid genomic testing in pediatric critical care requires robust clinical and laboratory pathways that provide equitable and consistent service across health care systems. Objective: To prospectively evaluate the performance of a multicenter network for ultra-rapid genomic diagnosis in a public health care system. Design, Setting, and Participants: Descriptive feasibility study of critically ill pediatric patients with suspected monogenic conditions treated at 12 Australian hospitals between March 2018 and February 2019, with data collected to May 2019. A formal implementation strategy emphasizing communication and feedback, standardized processes, coordination, distributed leadership, and collective learning was used to facilitate adoption. Exposures: Ultra-rapid exome sequencing. Main Outcomes and Measures: The primary outcome was time from sample receipt to ultra-rapid exome sequencing report. The secondary outcomes were the molecular diagnostic yield, the change in clinical management after the ultra-rapid exome sequencing report, the time from hospital admission to the laboratory report, and the proportion of laboratory reports returned prior to death or hospital discharge. Results: The study population included 108 patients with a median age of 28 days (range, 0 days to 17 years); 34% were female; and 57% were from neonatal intensive care units, 33% were from pediatric intensive care units, and 9% were from other hospital wards. The mean time from sample receipt to ultra-rapid exome sequencing report was 3.3 days (95% CI, 3.2-3.5 days) and the median time was 3 days (range, 2-7 days). The mean time from hospital admission to ultra-rapid exome sequencing report was 17.5 days (95% CI, 14.6-21.1 days) and 93 reports (86%) were issued prior to death or hospital discharge. A molecular diagnosis was established in 55 patients (51%). Eleven diagnoses (20%) resulted from using the following approaches to augment standard exome sequencing analysis: mitochondrial genome sequencing analysis, exome sequencing-based copy number analysis, use of international databases to identify novel gene-disease associations, and additional phenotyping and RNA analysis. In 42 of 55 patients (76%) with a molecular diagnosis and 6 of 53 patients (11%) without a molecular diagnosis, the ultra-rapid exome sequencing result was considered as having influenced clinical management. Targeted treatments were initiated in 12 patients (11%), treatment was redirected toward palliative care in 14 patients (13%), and surveillance for specific complications was initiated in 19 patients (18%). Conclusions and Relevance: This study suggests feasibility of ultra-rapid genomic testing in critically ill pediatric patients with suspected monogenic conditions in the Australian public health care system. However, further research is needed to understand the clinical value of such testing, and the generalizability of the findings to other health care settings.