Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Nat Immunol ; 24(9): 1443-1457, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37563309

RESUMO

Tissue-resident macrophages (TRMs) are long-lived cells that maintain locally and can be phenotypically distinct from monocyte-derived macrophages. Whether TRMs and monocyte-derived macrophages have district roles under differing pathologies is not understood. Here, we showed that a substantial portion of the macrophages that accumulated during pancreatitis and pancreatic cancer in mice had expanded from TRMs. Pancreas TRMs had an extracellular matrix remodeling phenotype that was important for maintaining tissue homeostasis during inflammation. Loss of TRMs led to exacerbation of severe pancreatitis and death, due to impaired acinar cell survival and recovery. During pancreatitis, TRMs elicited protective effects by triggering the accumulation and activation of fibroblasts, which was necessary for initiating fibrosis as a wound healing response. The same TRM-driven fibrosis, however, drove pancreas cancer pathogenesis and progression. Together, these findings indicate that TRMs play divergent roles in the pathogenesis of pancreatitis and cancer through regulation of stromagenesis.


Assuntos
Pâncreas , Pancreatite , Camundongos , Animais , Pâncreas/patologia , Macrófagos , Pancreatite/genética , Pancreatite/patologia , Fibrose , Neoplasias Pancreáticas
3.
Clin Cancer Res ; 28(24): 5254-5262, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36228156

RESUMO

PURPOSE: Targeting focal adhesion kinase (FAK) renders checkpoint immunotherapy effective in pancreatic ductal adenocarcinoma (PDAC) mouse model. Defactinib is a highly potent oral FAK inhibitor that has a tolerable safety profile. PATIENTS AND METHODS: We conducted a multicenter, open-label, phase I study with dose escalation and expansion phases. In dose escalation, patients with refractory solid tumors were treated at five escalating dose levels of defactinib and gemcitabine to identify a recommended phase II dose (RP2D). In expansion phase, patients with metastatic PDAC who progressed on frontline treatment (refractory cohort) or had stable disease (SD) after at least 4 months of standard gemcitabine/nab-paclitaxel (maintenance cohort) were treated at RP2D. Pre- and posttreatment tumor biopsies were performed to evaluate tumor immunity. RESULTS: The triple drug combination was well-tolerated, with no dose-limiting toxicities. Among 20 treated patients with refractory PDAC, the disease control rate (DCR) was 80%, with one partial response (PR) and 15 SDs, and the median progression-free survival (PFS) and overall survival (OS) were 3.6 and 7.8 months, respectively. Among 10 evaluable patients in the maintenance cohort, DCR was 70% with one PR and six SDs. Three patients with SD came off study due to treatment- or disease-related complications. The median PFS and OS on study treatment were 5.0 and 8.3 months, respectively. CONCLUSIONS: The combination of defactinib, pembrolizumab, and gemcitabine was well-tolerated and safe, had promising preliminary efficacy, and showed biomarker activity in infiltrative T lymphocytes. Efficacy of this strategy may require incorporation of more potent chemotherapy in future studies.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Animais , Camundongos , Gencitabina , Desoxicitidina , Albuminas , Paclitaxel , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias Pancreáticas/patologia , Adenocarcinoma/patologia , Neoplasias Pancreáticas
4.
Cancer Discov ; 12(12): 2774-2799, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36165893

RESUMO

The effects of radiotherapy (RT) on tumor immunity in pancreatic ductal adenocarcinoma (PDAC) are not well understood. To better understand if RT can prime antigen-specific T-cell responses, we analyzed human PDAC tissues and mouse models. In both settings, there was little evidence of RT-induced T-cell priming. Using in vitro systems, we found that tumor-stromal components, including fibroblasts and collagen, cooperate to blunt RT efficacy and impair RT-induced interferon signaling. Focal adhesion kinase (FAK) inhibition rescued RT efficacy in vitro and in vivo, leading to tumor regression, T-cell priming, and enhanced long-term survival in PDAC mouse models. Based on these data, we initiated a clinical trial of defactinib in combination with stereotactic body RT in patients with PDAC (NCT04331041). Analysis of PDAC tissues from these patients showed stromal reprogramming mirroring our findings in genetically engineered mouse models. Finally, the addition of checkpoint immunotherapy to RT and FAK inhibition in animal models led to complete tumor regression and long-term survival. SIGNIFICANCE: Checkpoint immunotherapeutics have not been effective in PDAC, even when combined with RT. One possible explanation is that RT fails to prime T-cell responses in PDAC. Here, we show that FAK inhibition allows RT to prime tumor immunity and unlock responsiveness to checkpoint immunotherapy. This article is highlighted in the In This Issue feature, p. 2711.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Camundongos , Animais , Humanos , Proteína-Tirosina Quinases de Adesão Focal , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/radioterapia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/radioterapia , Imunoterapia , Microambiente Tumoral , Linhagem Celular Tumoral , Neoplasias Pancreáticas
5.
Gels ; 5(2)2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31003516

RESUMO

Honey is well-known for its wound healing capability and Manuka honey (MH) contains a unique Manuka factor, providing an additional antibacterial agent. Previously, there has not been a practical way to apply MH to a wound site, which renders treatment for an extended period extremely difficult. Tissue-engineered scaffolds offer an alternative treatment method to standard dressings by providing varying geometries to best treat the specific tissue. MH was incorporated into cryogels, hydrogels, and electrospun scaffolds to assess the effect of scaffold geometry on bacterial clearance and adhesion, as well as cellular adhesion. Electrospun scaffolds exhibited a faster release due to the nanoporous fibrous geometry which led to a larger partial bacterial clearance as compared to the more three-dimensional cryogels (CG) and hydrogels (HG). Similarly, the fast release of MH from the electrospun scaffolds resulted in reduced bacterial adhesion. Overall, the fast MH release of the electrospun scaffolds versus the extended release of the HG and CG scaffolds provides differences in cellular/bacterial adhesion and advantages for both short and long-term applications, respectively. This manuscript provides a comparison of the scaffold pore structures as well as bacterial and cellular properties, providing information regarding the relationship between varying scaffold geometry and MH efficacy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA