Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain ; 147(9): 3059-3069, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39049445

RESUMO

Perivascular macrophages (PVMs) and, to a lesser degree, microglia are targets and reservoirs of HIV and simian immunodeficiency virus (SIV) in the brain. Previously, we demonstrated that colony-stimulating factor 1 receptor (CSF1R) in PVMs was upregulated and activated in chronically SIV-infected rhesus macaques with encephalitis, correlating with SIV infection of PVMs. Herein, we investigated the role of CSF1R in the brain during acute SIV infection using BLZ945, a brain-penetrant CSF1R kinase inhibitor. Apart from three uninfected historic controls, nine Indian rhesus macaques were infected acutely with SIVmac251 and divided into three groups (n = 3 each): an untreated control and two groups treated for 20-30 days with low- (10 mg/kg/day) or high- (30 mg/kg/day) dose BLZ945. With the high-dose BLZ945 treatment, there was a significant reduction in cells expressing CD163 and CD206 across all four brain areas examined, compared with the low-dose treatment and control groups. In 9 of 11 tested regions, tissue viral DNA (vDNA) loads were reduced by 95%-99% following at least one of the two doses, and even to undetectable levels in some instances. Decreased numbers of CD163+ and CD206+ cells correlated significantly with lower levels of vDNA in all four corresponding brain areas. In contrast, BLZ945 treatment did not significantly affect the number of microglia. Our results indicate that doses as low as 10 mg/kg/day of BLZ945 are sufficient to reduce the tissue vDNA loads in the brain with no apparent adverse effect. This study provides evidence that infected PVMs are highly sensitive to CSF1R inhibition, opening new possibilities to achieve viral clearance.


Assuntos
Encéfalo , Macaca mulatta , Macrófagos , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/virologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Carga Viral/efeitos dos fármacos , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Antígenos CD/metabolismo , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/virologia , Antígenos de Diferenciação Mielomonocítica/metabolismo , Receptores de Superfície Celular/metabolismo , Anisóis
2.
Brain Pathol ; : e13282, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38932696

RESUMO

Although the concept that the blood-brain barrier (BBB) plays an important role in the etiology and pathogenesis of Alzheimer's disease (AD) has become increasingly accepted, little is known yet about how it actually contributes. We and others have recently identified a novel functionally distinct subset of BBB pericytes (PCs). In the present study, we sought to determine whether these PC subsets differentially contribute to AD-associated pathologies by immunohistochemistry and amyloid beta (Aß) peptidomics. We demonstrated that a disease-associated PC subset (PC2) expanded in AD patients compared to age-matched, cognitively unimpaired controls. Surprisingly, we found that this increase in the percentage of PC2 (%PC2) was correlated negatively with BBB breakdown in AD patients, unlike in natural aging or other reported disease conditions. The higher %PC2 in AD patients was also correlated with a lower Aß42 plaque load and a lower Aß42:Aß40 ratio in the brain as determined by immunohistochemistry. Colocalization analysis of multicolor confocal immunofluorescence microscopy images suggests that AD patient with low %PC2 have higher BBB breakdown due to internalization of Aß42 by the physiologically normal PC subset (PC1) and their concomitant cell death leading to more vessels without PCs and increased plaque load. On the contrary, it appears that PC2 can secrete cathepsin D to cleave and degrade Aß built up outside of PC2 into more soluble forms, ultimately contributing to less BBB breakdown and reducing Aß plaque load. Collectively our data shows functionally distinct mechanisms for PC1 and PC2 in high Aß conditions, demonstrating the importance of correctly identifying these populations when investigating the contribution of neurovascular dysfunction to AD pathogenesis.

3.
Cells ; 10(4)2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919664

RESUMO

Pericytes are increasingly recognized as being important in the control of blood-brain barrier permeability and vascular flow. Research on this important cell type has been hindered by widespread confusion regarding the phenotypic identity and nomenclature of pericytes and other perivascular cell types. In addition, pericyte heterogeneity and mouse-human species differences have contributed to confusion. Herein we summarize our present knowledge on the identification of pericytes and pericyte subsets in humans, primarily focusing on recent findings in humans and nonhuman primates. Precise identification and definition of pericytes and pericyte subsets in humans may help us to better understand pericyte biology and develop new therapeutic approaches specifically targeting disease-associated pericyte subsets.


Assuntos
Barreira Hematoencefálica/patologia , Homeostase , Doenças do Sistema Nervoso/patologia , Pericitos/patologia , Humanos , Macrófagos/patologia , Miócitos de Músculo Liso/patologia
4.
Neurobiol Aging ; 96: 128-136, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33002766

RESUMO

Lax phenotypic characterization of these morphologically distinct pericytes has delayed our understanding of their role in neurological disorders. We herein establish markers which uniquely distinguish different subpopulations of human brain microvascular pericytes and characterize them independently from cerebrovascular smooth muscle cells. Furthermore, we begin to elucidate the roles of these subsets in blood-brain barrier (BBB) breakdown by studying natural aging and simian immunodeficiency virus (SIV) infection in rhesus macaques. We demonstrate that the main type-1 pericyte subpopulation in the brain of young uninfected adults is positive for platelet-derived growth factor receptor-ß (PDGFRB) and negative for α-smooth muscle actin (SMA) and myosin heavy chain 11 (MYH11), whereas PDGFRB+/SMA+/MYH11- (type-2) pericytes are found more frequently in older adults and are associated with SIV infection and progression. Interestingly, we find a strong positive correlation between the degree of BBB breakdown and the percentage of type-2 pericytes regardless of age or SIV status. Taken together, our findings suggest that type-2 pericytes may be a cellular biomarker related to BBB disruption independent of disease status.


Assuntos
Envelhecimento/patologia , Barreira Hematoencefálica/patologia , Pericitos/classificação , Pericitos/fisiologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Vírus da Imunodeficiência Símia , Actinas/metabolismo , Adulto , Animais , Encéfalo/irrigação sanguínea , Humanos , Macaca mulatta , Microvasos/citologia , Cadeias Pesadas de Miosina/metabolismo , Pericitos/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Adulto Jovem
5.
Brain Pathol ; 30(6): 1017-1027, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32585067

RESUMO

Zika virus (ZIKV) is a flavivirus that can cause neuropathogenesis in adults and fetal neurologic malformation following the infection of pregnant women. We used a nonhuman primate model, the Indian-origin Rhesus macaque (IRM), to gain insight into virus-associated hallmarks of ZIKV-induced adult neuropathology. We find that the virus causes prevalent acute and chronic neuroinflammation and chronic disruption of the blood-brain barrier (BBB) in adult animals. ZIKV infection resulted in specific short- and long-term augmented expression of the chemokine CXCL12 in the central nervous system (CNS)of adult IRMs. Moreover, CXCL12 expression persists long after the initial viral infection is apparently cleared. CXCL12 plays a key role both in regulating lymphocyte trafficking through the BBB to the CNS and in mediating repair of damaged neural tissue including remyelination. Understanding how CXCL12 expression is controlled will likely be of central importance in the definition of ZIKV-associated neuropathology in adults.


Assuntos
Barreira Hematoencefálica/virologia , Encéfalo/virologia , Quimiocina CXCL12/metabolismo , Encefalite/virologia , Regulação para Cima , Infecção por Zika virus/patologia , Zika virus/isolamento & purificação , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Encefalite/metabolismo , Encefalite/patologia , Feminino , Macaca mulatta , Masculino , Gravidez , Infecção por Zika virus/metabolismo
6.
Brain Pathol ; 30(3): 603-613, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31834964

RESUMO

We previously showed that rhesus macaques neonatally infected with simian immunodeficiency virus (SIV) do not develop SIV encephalitis (SIVE) and maintain low brain viral loads despite having similar plasma viral loads compared to SIV-infected adults. We hypothesize that differences in myeloid cell populations that are the known target of SIV and HIV in the brain contribute to the lack of neonatal susceptibility to lentivirus-induced encephalitis. Using immunohistochemistry and immunofluorescence microscopy, we examined the frontal cortices from uninfected and SIV-infected infant and adult macaques (n = 8/ea) as well as adults with SIVE (n = 4) to determine differences in myeloid cell populations. The number of CD206+ brain perivascular macrophages (PVMs) was significantly greater in uninfected infants than in uninfected adults and was markedly lower in SIV-infected infants while microglia numbers were unchanged across groups. CD206+ PVMs, which proliferate after infection in SIV-infected adults, did not undergo proliferation in infants. While virtually all CD206+ cells in adults are also CD163+, infants have a distinct CD206 single-positive population in addition to the double-positive population commonly seen in adults. Notably, we found that more than 60% of these unique CD206+CD163- PVMs in SIV-infected infants were positive for cleaved caspase-3, an indicator of apoptosis, and that nearly 100% of this subset were concomitantly positive for the necroptosis marker receptor-interacting protein kinase-3 (RIP3). These findings show that distinct subpopulations of PVMs found in infants undergo programmed cell death instead of proliferation following SIV infection, which may lead to the absence of PVM-dependent SIVE and the limited size of the virus reservoir in the infant brain.


Assuntos
Encéfalo/patologia , Macrófagos/patologia , Necroptose/fisiologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Animais , Feminino , Macaca mulatta , Masculino , Vírus da Imunodeficiência Símia
7.
J Neurovirol ; 25(4): 578-588, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31119711

RESUMO

Despite combination antiretroviral therapies making HIV a chronic rather than terminal condition for many people, the prevalence of HIV-associated neurocognitive disorders (HAND) is increasing. This is especially problematic for children living with HIV. Children diagnosed HAND rarely display the hallmark pathology of HIV encephalitis in adults, namely infected macrophages and multinucleated giant cells in the brain. This finding has also been documented in rhesus macaques infected perinatally with simian immunodeficiency virus (SIV). However, the extent and mechanisms of lack of susceptibility to encephalitis in perinatally HIV-infected children remain unclear. In the current study, we compared brains of macaques infected with pathogenic strains of SIV at different ages to determine neuropathology, correlates of neuroinflammation, and potential underlying mechanisms. Encephalitis was not found in the macaques infected within 24 h of birth despite similar high plasma viral load and high monocyte turnover. Macaques developed encephalitis only when they were infected after 4 months of age. Lower numbers of CCR5-positive cells in the brain, combined with a less leaky blood-brain barrier, may be responsible for the decreased virus infection in the brain and consequently the absence of encephalitis in newborn macaques infected with SIV.


Assuntos
Barreira Hematoencefálica/imunologia , Tronco Encefálico/imunologia , Resistência à Doença , Encefalite Viral/imunologia , Lobo Frontal/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/patogenicidade , Fatores Etários , Animais , Animais Recém-Nascidos , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/virologia , Tronco Encefálico/patologia , Tronco Encefálico/virologia , Permeabilidade Capilar/imunologia , Encefalite Viral/genética , Encefalite Viral/patologia , Encefalite Viral/virologia , Lobo Frontal/patologia , Lobo Frontal/virologia , Expressão Gênica , Macaca mulatta/virologia , Macrófagos/imunologia , Macrófagos/patologia , Macrófagos/virologia , Monócitos/imunologia , Monócitos/patologia , Monócitos/virologia , RNA Viral/genética , RNA Viral/metabolismo , Receptores CCR5/genética , Receptores CCR5/imunologia , Receptores Virais/genética , Receptores Virais/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Carga Viral
8.
J Neuroinflammation ; 16(1): 86, 2019 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-30981282

RESUMO

BACKGROUND: Impairment of the blood-brain barrier (BBB) has been associated with cognitive decline in many CNS diseases, including HIV-associated neurocognitive disorders (HAND). Recent research suggests an important role for the Sonic hedgehog (Shh) signaling pathway in the maintenance of BBB integrity under both physiological and pathological conditions. METHODS: In the present study, we sought to examine the expression of Shh and its downstream effectors in relation to brain pericytes and BBB integrity in HIV-infected humans and rhesus macaques infected with simian immunodeficiency virus (SIV), an animal model of HIV infection and CNS disease. Cortical brain tissues from uninfected (n = 4) and SIV-infected macaques with (SIVE, n = 6) or without encephalitis (SIVnoE, n = 4) were examined using multi-label, semi-quantitative immunofluorescence microscopy of Shh, netrin-1, tight junction protein zona occludens 1 (ZO1), glial fibrillary acidic protein, CD163, platelet-derived growth factor receptor b (PDGFRB), glucose transporter 1, fibrinogen, and SIV Gag p28. RESULTS: While Shh presence in the brain persisted during HIV/SIV infection, both netrin-1 immunoreactivity and the size of PDGFRB+ pericytes, a cellular source of netrin-1, were increased around non-lesion-associated vessels in encephalitis compared to uninfected brain or brain without encephalitis, but were completely absent in encephalitic lesions. Hypertrophied pericytes were strongly localized in areas of fibrinogen extravasation and showed the presence of intracellular SIVp28 and HIVp24 by immunofluorescence in all SIV and HIV encephalitis cases examined, respectively. CONCLUSIONS: The lack of pericytes and netrin-1 in encephalitic lesions, in line with downregulation of ZO1 on the fenestrated endothelium, suggests that pericyte loss, despite the strong presence of Shh, contributes to HIV/SIV-induced BBB disruption and neuropathogenesis in HAND.


Assuntos
Encéfalo/patologia , Regulação Viral da Expressão Gênica/fisiologia , Proteínas Hedgehog/metabolismo , Infecções por Lentivirus/patologia , Pericitos/metabolismo , Pericitos/patologia , Transdução de Sinais/fisiologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Encéfalo/virologia , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Infecções por HIV/patologia , Humanos , Macaca mulatta , Masculino , Netrina-1/metabolismo , Ocludina/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Vírus da Imunodeficiência Símia/patogenicidade , Proteína da Zônula de Oclusão-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA