Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuro Oncol ; 25(10): 1763-1774, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37186014

RESUMO

BACKGROUND: Chromosome instability (CIN) with recurrent copy number alterations is a feature of many solid tumors, including glioblastoma (GBM), yet the genes that regulate cell division are rarely mutated in cancers. Here, we show that the brain-abundant mitogen, platelet-derived growth factor-A (PDGFA) fails to induce the expression of kinetochore and spindle assembly checkpoint genes leading to defective mitosis in neural progenitor cells (NPCs). METHODS: Using a recently reported in vitro model of the initiation of high-grade gliomas from murine NPCs, we investigated the immediate effects of PDGFA exposure on the nuclear and mitotic phenotypes and patterns of gene and protein expression in NPCs, a putative GBM cell of origin. RESULTS: NPCs divided abnormally in defined media containing PDGFA with P53-dependent effects. In wild-type cells, defective mitosis was associated with P53 activation and cell death, but in some null cells, defective mitosis was tolerated. Surviving cells had unstable genomes and proliferated in the presence of PDGFA accumulating random and clonal chromosomal rearrangements. The outcome of this process was a population of tumorigenic NPCs with recurrent gains and losses of chromosomal regions that were syntenic to those recurrently gained and lost in human GBM. By stimulating proliferation without setting the stage for successful mitosis, PDGFA-transformed NPCs lacking P53 function. CONCLUSIONS: Our work describes a mechanism of transformation of NPCs by a brain-associated mitogen, raising the possibility that the unique genomic architecture of GBM is an adaptation to defective mitosis that ensures the survival of affected cells.


Assuntos
Glioblastoma , Células-Tronco Neurais , Humanos , Animais , Camundongos , Mitógenos/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Mitose , Células-Tronco Neurais/patologia , Glioblastoma/patologia
2.
Neuro Oncol ; 22(8): 1150-1161, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32296841

RESUMO

BACKGROUND: Imagining ways to prevent or treat glioblastoma (GBM) has been hindered by a lack of understanding of its pathogenesis. Although overexpression of platelet derived growth factor with two A-chains (PDGF-AA) may be an early event, critical details of the core biology of GBM are lacking. For example, existing PDGF-driven models replicate its microscopic appearance, but not its genomic architecture. Here we report a model that overcomes this barrier to authenticity. METHODS: Using a method developed to establish neural stem cell cultures, we investigated the effects of PDGF-AA on subventricular zone (SVZ) cells, one of the putative cells of origin of GBM. We microdissected SVZ tissue from p53-null and wild-type adult mice, cultured cells in media supplemented with PDGF-AA, and assessed cell viability, proliferation, genome stability, and tumorigenicity. RESULTS: Counterintuitive to its canonical role as a growth factor, we observed abrupt and massive cell death in PDGF-AA: wild-type cells did not survive, whereas a small fraction of null cells evaded apoptosis. Surviving null cells displayed attenuated proliferation accompanied by whole chromosome gains and losses. After approximately 100 days in PDGF-AA, cells suddenly proliferated rapidly, acquired growth factor independence, and became tumorigenic in immune-competent mice. Transformed cells had an oligodendrocyte precursor-like lineage marker profile, were resistant to platelet derived growth factor receptor alpha inhibition, and harbored highly abnormal karyotypes similar to human GBM. CONCLUSION: This model associates genome instability in neural progenitor cells with chronic exposure to PDGF-AA and is the first to approximate the genomic landscape of human GBM and the first in which the earliest phases of the disease can be studied directly.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Células-Tronco Neurais , Fator de Crescimento Derivado de Plaquetas , Proteína Supressora de Tumor p53 , Animais , Neoplasias Encefálicas/induzido quimicamente , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Células Cultivadas , Glioblastoma/induzido quimicamente , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Ventrículos Laterais/efeitos dos fármacos , Ventrículos Laterais/metabolismo , Ventrículos Laterais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/patologia , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/metabolismo
3.
PLoS One ; 13(8): e0202860, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30153289

RESUMO

BACKGROUND: Temozolomide (TMZ) is active against glioblastomas (GBM) in which the O6-methylguanine-DNA methyltransferase (MGMT) gene is silenced. However, even in responsive cases, its beneficial effect is undermined by the emergence of drug resistance. Here, we tested whether inhibition of poly (ADP-ribose) polymerase-1 and -2 (PARP) enhanced the effectiveness of TMZ. METHODS: Using patient derived brain tumor initiating cells (BTICs) and orthotopic xenografts as models of newly diagnosed and recurrent high-grade glioma, we assessed the effects of TMZ, ABT-888, and the combination of TMZ and ABT-888 on the viability of BTICs and survival of tumor-bearing mice. We also studied DNA damage repair, checkpoint protein phosphorylation, and DNA replication in mismatch repair (MMR) deficient cells treated with TMZ and TMZ plus ABT-888. RESULTS: Cells and xenografts derived from newly diagnosed MGMT methylated high-grade gliomas were sensitive to TMZ while those derived from unmethylated and recurrent gliomas were typically resistant. ABT-888 had no effect on the viability of BTICs or tumor bearing mice, but co-treatment with TMZ restored sensitivity in resistant cells and xenografts from newly diagnosed unmethylated gliomas and recurrent gliomas with MSH6 mutations. In contrast, the addition of ABT-888 to TMZ had little sensitizing effect on cells and xenografts derived from newly diagnosed methylated gliomas. In a model of acquired TMZ resistance mediated by loss of MMR gene MSH6, re-sensitization to TMZ by ABT-888 was accompanied by persistent DNA strand breaks, re-engagement of checkpoint kinase signaling, and interruption of DNA synthesis. CONCLUSION: In laboratory models, the addition of ABT-888 to TMZ overcame resistance to TMZ.


Assuntos
Benzimidazóis/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioma/patologia , Temozolomida/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Gradação de Tumores , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA