Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Physiol Meas ; 45(5)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38749458

RESUMO

Objective.Diagnosis of incipient acute hypovolemia is challenging as vital signs are typically normal and patients remain asymptomatic at early stages. The early identification of this entity would affect patients' outcome if physicians were able to treat it precociously. Thus, the development of a noninvasive, continuous bedside monitoring tool to detect occult hypovolemia before patients become hemodynamically unstable is clinically relevant. We hypothesize that pulse oximeter's alternant (AC) and continuous (DC) components of the infrared light are sensitive to acute and small changes in patient's volemia. We aimed to test this hypothesis in a cohort of healthy blood donors as a model of slight hypovolemia.Approach.We planned to prospectively study blood donor volunteers removing 450 ml of blood in supine position. Noninvasive arterial blood pressure, heart rate, and finger pulse oximetry were recorded. Data was analyzed before donation, after donation and during blood auto-transfusion generated by the passive leg-rising (PLR) maneuver.Main results.Sixty-six volunteers (44% women) accomplished the protocol successfully. No clinical symptoms of hypovolemia, arterial hypotension (systolic pressure < 90 mmHg), brady-tachycardia (heart rate <60 and >100 beats-per-minute) or hypoxemia (SpO2< 90%) were observed during donation. The AC signal before donation (median 0.21 and interquartile range 0.17 a.u.) increased after donation [0.26(0.19) a.u;p< 0.001]. The DC signal before donation [94.05(3.63) a.u] increased after blood extraction [94.65(3.49) a.u;p< 0.001]. When the legs' blood was auto-transfused during the PLR, the AC [0.21(0.13) a.u.;p= 0.54] and the DC [94.25(3.94) a.u.;p= 0.19] returned to pre-donation levels.Significance.The AC and DC components of finger pulse oximetry changed during blood donation in asymptomatic volunteers. The continuous monitoring of these signals could be helpful in detecting occult acute hypovolemia. New pulse oximeters should be developed combining the AC/DC signals with a functional hemodynamic monitoring of fluid responsiveness to define which patient needs fluid administration.


Assuntos
Doadores de Sangue , Dedos , Fotopletismografia , Humanos , Projetos Piloto , Feminino , Masculino , Adulto , Dedos/irrigação sanguínea , Hemorragia/diagnóstico , Pessoa de Meia-Idade , Hipovolemia/diagnóstico , Hipovolemia/fisiopatologia , Oximetria , Doença Aguda , Adulto Jovem , Frequência Cardíaca
3.
Physiol Meas ; 45(3)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38422512

RESUMO

Objective. Since pulse wave transit time (PWTT) shortens as pulmonary artery pressure (PAP) increases it was suggested as a potential non-invasive surrogate for PAP. The state of tidal lung filling is also known to affect PWTT independently of PAP. The aim of this retrospective analysis was to test whether respiratory gating improved the correlation coefficient between PWTT and PAP.Approach. In each one of five anesthetized and mechanically ventilated pigs two high-fidelity pressure catheters were placed, one directly behind the pulmonary valve, and the second one in a distal branch of the pulmonary artery. PAP was raised using the thromboxane A2 analogue U46619 and animals were ventilated in a pressure controlled mode (I:E ratio 1:2, respiratory rate 12/min, tidal volume of 6 ml kg-1). All signals were recorded using the multi-channel platform PowerLab®. The arrival of the pulse wave at each catheter tip was determined using a MATLAB-based modified hyperbolic tangent algorithm and PWTT calculated as the time interval between these arrivals.Main results. Correlation coefficient for PWTT and mean PAP wasr= 0.932 for thromboxane. This correlation coefficient increased considerably when heart beats either at end-inspiration (r= 0.978) or at end-expiration (r= 0.985) were selected (=respiratory gating).Significance. The estimation of mean PAP from PWTT improved significantly when taking the respiratory cycle into account. Respiratory gating is suggested to improve for the estimation of PAP by PWTT.


Assuntos
Hipertensão Pulmonar , Animais , Suínos , Artéria Pulmonar , Estudos Retrospectivos , Frequência Cardíaca , Análise de Onda de Pulso , Pressão Sanguínea
4.
BMC Anesthesiol ; 23(1): 320, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726649

RESUMO

BACKGROUND AND GOAL OF STUDY: Pulse pressure variation (PPV) and stroke volume variation (SVV), which are based on the forces caused by controlled mechanical ventilation, are commonly used to predict fluid responsiveness. When PPV and SVV were introduced into clinical practice, volume-controlled ventilation (VCV) with tidal volumes (VT) ≥ 10 ml kg- 1 was most commonly used. Nowadays, lower VT and the use of pressure-controlled ventilation (PCV) has widely become the preferred type of ventilation. Due to their specific flow characteristics, VCV and PCV result in different airway pressures at comparable tidal volumes. We hypothesised that higher inspiratory pressures would result in higher PPVs and aimed to determine the impact of VCV and PCV on PPV and SVV. METHODS: In this self-controlled animal study, sixteen anaesthetised, paralysed, and mechanically ventilated (goal: VT 8 ml kg- 1) pigs were instrumented with catheters for continuous arterial blood pressure measurement and transpulmonary thermodilution. At four different intravascular fluid states (IVFS; baseline, hypovolaemia, resuscitation I and II), ventilatory and hemodynamic data including PPV and SVV were assessed during VCV and PCV. Statistical analysis was performed using U-test and RM ANOVA on ranks as well as descriptive LDA and GEE analysis. RESULTS: Complete data sets were available of eight pigs. VT and respiratory rates were similar in both forms. Heart rate, central venous, systolic, diastolic, and mean arterial pressures were not different between VCV and PCV at any IVFS. Peak inspiratory pressure was significantly higher in VCV, while plateau, airway and transpulmonary driving pressures were significantly higher in PCV. However, these higher pressures did not result in different PPVs nor SVVs at any IVFS. CONCLUSION: VCV and PCV at similar tidal volumes and respiratory rates produced PPVs and SVVs without clinically meaningful differences in this experimental setting. Further research is needed to transfer these results to humans.


Assuntos
Artérias , Respiração , Humanos , Animais , Suínos , Pressão Sanguínea , Determinação da Pressão Arterial , Catéteres
5.
Paediatr Anaesth ; 33(11): 973-982, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37403466

RESUMO

BACKGROUND: Volumetric capnography in healthy ventilated neonates showed deformed waveforms, which are supposedly due to technological limitations of flow and carbon dioxide sensors. AIMS: This bench study analyzed the role of apparatus dead space on the shape of capnograms in simulated neonates with healthy lungs. METHODS: We simulated mechanical breaths in neonates of 2, 2.5, and 3 kg of body weight using a neonatal volumetric capnography simulator. The simulator was fed by a fixed amount of carbon dioxide of 6 mL/kg/min. Such simulator was ventilated in a volume control mode using fixed ventilatory settings with a tidal volume of 8 mL/kg and respiratory rates of 40, 35, and 30 breaths per minute for the 2, 2.5 and 3 kg neonates, respectively. We tested the above baseline ventilation with and without an additional apparatus dead space of 4 mL. RESULTS: Simulations showed that adding the apparatus dead space to baseline ventilation increased the amount of re-inhaled carbon dioxide in all neonates: 0.16 ± 0.01 to 0.32 ± 0.03 mL (2 kg), 0.14 ± 0.02 to 0.39 ± 0.05 mL (2.5 kg), and 0.13 ± 0.01 to 0.36 ± 0.05 mL (3 kg); (p < .001). Apparatus dead space was computed as part of the airway dead space, and therefore, the ratio of airway dead space to tidal volume increased from 0.51 ± 0.04 to 0.68 ± 0.06, from 0.43 ± 0.04 to 0.62 ± 0.01 and from 0.38 ± 0.01 to 0.60 ± 0.02 in the 2, 2.5 and 3 kg simulated neonates, respectively (p < .001). Compared to baseline ventilation, adding apparatus dead space decreased the ratio of the volume of phase III to VT size from 31% to 11% (2 kg), from 40% to 16% (2.5 kg) and from 50% to 18% (3 kg); (p < .001). CONCLUSIONS: The addition of a small apparatus dead space artificially deformed the volumetric capnograms in simulated neonates with healthy lungs.


Assuntos
Dióxido de Carbono , Respiração Artificial , Recém-Nascido , Humanos , Espaço Morto Respiratório , Pulmão , Volume de Ventilação Pulmonar , Capnografia
6.
Simul Healthc ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36877685

RESUMO

METHODS: An infant lung simulator was fed with CO2 supplied by a mass flow controller (VCO2-IN) and ventilated using standard settings. A volumetric capnograph was placed between the endotracheal tube and the ventilatory circuit. We simulated ventilated babies of different body weights (2, 2.5, 3, and 5 kg) with a VCO2 ranging from 12 to 30 mL/min. The correlation coefficient (r2), bias, coefficient of variation (CV = SD/x × 100), and precision (2 × CV) between the VCO2-IN and the elimination of CO2 recorded by the capnograph (VCO2-OUT) were calculated. The quality of the capnogram's waveforms was compared with real ones belonging to anesthetized infants using an 8-point scoring system, where 6 points or greater meant that the simulated capnogram showed good, 5 to 3 points acceptable, and less than 3 points an unacceptable shape. RESULTS: The correlation between VCO2-IN and VCO2-OUT was r2 = 0.9953 (P < 0.001), with a bias of 0.16 (95% confidence intervals from 0.12 to 0.20) mL/min. The CV was 5% or less and the precision was 10% or less. All simulated capnograms showed similar shapes compared with real babies, scoring 6 points for 3 kg and 6.5 points for 2-, 2.5-, and 5-kg babies. CONCLUSIONS: The simulator of volumetric capnograms was reliable, accurate, and precise for simulating the CO2 kinetics of ventilated infants.

7.
Biomedicines ; 11(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36672690

RESUMO

Pulse wave transit time (PWTT) shortens as pulmonary artery pressure (PAP) increases and was therefore suggested as a surrogate parameter for PAP. The aim of this analysis was to reveal patterns and potential mechanisms of ventilation-induced periodic changes in PWTT under resting conditions. To measure both PWTT and PAP in five healthy pigs, two pulmonary artery Mikro-Tip™ catheters were inserted into the pulmonary vasculature: one with the tip placed in the pulmonary artery trunk, and a second one placed in a distal segment of the pulmonary artery. Animals received pressure-controlled mechanical ventilation. Ventilation-dependent changes were seen in both variables, PWTT and mean PAP; however, changes in PWTT were not synchronous with changes in PAP. Thus, plotting the value of PWTT for each heartbeat over the respective PAP revealed a characteristic hysteresis. At the beginning of inspiration, PAP rose while PWTT remained constant. During further inspiration, PWTT started to decrease rapidly as mPAP was about to reach its plateau. The same time course was observed during expiration: while mPAP approached its minimum, PWTT increased rapidly. During apnea this hysteresis disappeared. Thus, non-synchronous ventilation-induced changes in PWTT and PAP were found with inspiration causing a significant shortening of PWTT. Therefore, it is suggested that the respiratory cycle should be considered when using PWTT as a surrogate for PAP.

8.
Acta Anaesthesiol Scand ; 67(2): 185-194, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36268561

RESUMO

BACKGROUND: Gravity-dependent positioning therapy is an established concept in the treatment of severe acute respiratory distress syndrome and improves oxygenation in spontaneously breathing patients with hypoxemic acute respiratory failure. In patients with coronavirus disease 2019, this therapy seems to be less effective. Electrical impedance tomography as a point-of-care functional imaging modality for visualizing regional ventilation can possibly help identify patients who might benefit from positioning therapy and guide those maneuvers in real-time. Therefore, in this prospective observational study, we aimed to discover typical patterns in response to positioning maneuvers. METHODS: Distribution of ventilation in 10 healthy volunteers and in 12 patients with hypoxemic respiratory failure due to coronavirus disease 2019 was measured in supine, left, and right lateral positions using electrical impedance tomography. RESULTS: In this study, patients with coronavirus disease 2019 showed a variety of ventilation patterns, which were not predictable, whereas all but one healthy volunteer showed a typical and expected gravity-dependent distribution of ventilation with the body positions. CONCLUSION: Distribution of ventilation and response to lateral positioning is variable and thus unpredictable in spontaneously breathing patients with coronavirus disease 2019. Electrical impedance tomography might add useful information on the immediate reaction to postural maneuvers and should be elucidated further in clinical studies. Therefore, we suggest a customized individualized positioning therapy guided by electrical impedance tomography.


Assuntos
COVID-19 , Insuficiência Respiratória , Humanos , Impedância Elétrica , Tomografia/métodos , COVID-19/terapia , Respiração , Tomografia Computadorizada por Raios X
9.
Respir Care ; 67(8): 906-913, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35610029

RESUMO

BACKGROUND: To analyze the role of PEEP on dynamic relative regional strain (DRRS) in a model of ARDS, respective maps were generated by electrical impedance tomography (EIT). METHODS: Eight ARDS pigs submitted to PEEP steps of 0, 5, 10, and 15 cm H2O at fixed ventilation were evaluated by EIT images. DRRS was calculated as (VT-EIT/EELI)/(VT-EIT[15PEEP]/EELI[15PEEP]), where the tidal volume (VT)-EIT and end-expiratory lung impedance (EELI) are the tidal and end-expiratory change in lung impedance, respectively. The measurement at 15 PEEP was taken as reference (end-expiratory transpulmonary pressure > 0 cm H2O). The relationship between EIT variables (center of ventilation, EELI, and DRRS) and airway pressures was assessed with mixed-effects models using EIT measurements as dependent variables and PEEP as fixed-effect variable. RESULTS: At constant ventilation, respiratory compliance increased progressively with PEEP (lowest value at zero PEEP 10 ± 3 mL/cm H2O and highest value at 15 PEEP 16 ± 6 mL/cm H2O; P < .001), whereas driving pressure decreased with PEEP (highest value at zero PEEP 34 ± 6 cm H2O and lowest value at 15 PEEP 21 ± 4 cm H2O; P < .001). The mixed-effect regression models showed that the center of ventilation moved to dorsal lung areas with a slope of 1.81 (1.44-2.18) % points by each cm H2O of PEEP; P < .001. EELI increased with a slope of 0.05 (0.02-0.07) (arbitrary units) for each cm H2O of PEEP; P < .001. DRRS maps showed that local strain in ventral lung areas decreased with a slope of -0.02 (-0.24 to 0.15) with each cm H2O increase of PEEP; P < .001. CONCLUSIONS: EIT-derived DRRS maps showed high strain in ventral lung zones at low levels of PEEP. The findings suggest overdistention of the baby lung.


Assuntos
Respiração com Pressão Positiva , Síndrome do Desconforto Respiratório , Animais , Impedância Elétrica , Pulmão/diagnóstico por imagem , Modelos Teóricos , Respiração com Pressão Positiva/métodos , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Síndrome do Desconforto Respiratório/terapia , Suínos , Volume de Ventilação Pulmonar , Tomografia/métodos , Tomografia Computadorizada por Raios X
10.
Physiol Meas ; 43(3)2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35322796

RESUMO

Objective. A linear relationship between impedance change (ΔZ) measured by thoracic electrical impedance tomography (EIT) and tidal volume (VT) has been demonstrated. This study evaluated the agreement between the displayed VT calculated by the EIT software (VTEIT) and spirometry (VTSPIRO) after an indirect two-point calibration.Approach.The EIT software was programmed to execute a bedside two-point calibration from the subject-specific, linear equation defining the relationship between ΔZand VTSPIROand displaying VTEITbreath-by-breath in 20 neutered male, juvenile pigs. After EIT calibration VTs of 8, 12, 16 and 20 ml kg-1were applied to the lungs. VTEITand VTSPIROwere recorded and analysed using Bland-Altman plot for multiple subject measurements. Volumetric capnography (VCap) and spirometry data were explored as components of variance using multiple regression.Main results.A mean relative difference (bias) of 0.7% with 95% confidence interval (CI) of -10.4% to 10.7% were found between VTEITand VTSPIROfor the analysed data set. The variance in VTEITcould not be explained by any of the measured VCap or spirometry variables.Significance.The narrow CI estimated in this study allows the conclusion that EIT and its software can be used to measure and accurately convert ΔZinto mililitre VT at the bedside after applying an indirect two-point calibration.


Assuntos
Tomografia , Animais , Calibragem , Impedância Elétrica , Medidas de Volume Pulmonar/métodos , Masculino , Suínos , Volume de Ventilação Pulmonar , Tomografia/métodos
11.
Anaesthesiologie ; 71(6): 475-482, 2022 06.
Artigo em Alemão | MEDLINE | ID: mdl-34985550

RESUMO

BACKGROUND: The current naming of ventilation modes in anesthesiology and critical care is characterized by manufacturer-specific inconsistent acronyms. This is confusing for users and potentially life-threatening for patients. The standard, published in August 2021 in its German version as DIN EN ISO 19223:2021, aims to introduce a uniform classification with corresponding nomenclature. AIM OF THE WORK: To present the new standard and its consequences for the user. MATERIAL AND METHOD: Review and summary of DIN EN ISO 19223:2021 with a critical appraisal of its strengths and weaknesses. RESULTS: A simplified scheme shows the group classification of ventilation modes based on similar characteristics. These are further specified by additional variables. A reference table contrasts the new nomenclature of ventilation modes with those currently in use. Accordingly, the new classification scheme appears inconsistent and the variables are difficult to distinguish. CONCLUSION: Standardized terminology and semantics in respiratory care are necessary and desirable for error reduction. However, the recently presented standard fulfils these expectations only to some extent and in its current form will probably lead to further ambiguities and problems in the clinical routine. Accordingly, it is imperative that this first version of DIN EN ISO 19223:2021 be understood as the starting point for a discussion of its content, even outside the standards committees, so that its obvious weaknesses can be eradicated and the nomenclature made suitable for everyday use.


Assuntos
Respiração Artificial , Respiração , Cuidados Críticos , Humanos , Pulmão
12.
J Clin Monit Comput ; 36(4): 975-985, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34386896

RESUMO

Respiratory failure due to SARS-CoV-2 may progress rapidly. During the course of COVID-19, patients develop an increased respiratory drive, which may induce high mechanical strain a known risk factor for Patient Self-Inflicted Lung Injury (P-SILI). We developed a novel Electrical Impedance Tomography-based approach to visualize the Dynamic Relative Regional Strain (DRRS) in SARS-CoV-2 positive patients and compared these findings with measurements in lung healthy volunteers. DRRS was defined as the ratio of tidal impedance changes and end-expiratory lung impedance within each pixel of the lung region. DRRS values of the ten patients were considerably higher than those of the ten healthy volunteers. On repeated examination, patterns, magnitude and frequency distribution of DRRS were reproducible and in line with the clinical course of the patients. Lung ultrasound scores correlated with the number of pixels showing DRRS values above the derived threshold. Using Electrical Impedance Tomography we were able to generate, for the first time, images of DRRS which might indicate P-SILI in patients suffering from COVID-19.Trial Registration This observational study was registered 06.04.2020 in German Clinical Trials Register (DRKS00021276).


Assuntos
COVID-19 , Tomografia , Impedância Elétrica , Humanos , Pulmão/diagnóstico por imagem , Respiração com Pressão Positiva/métodos , SARS-CoV-2 , Tomografia/métodos
13.
Biomedicines ; 9(9)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34572397

RESUMO

For the non-invasive assessment of pulmonary artery pressure (PAP), surrogates like pulse wave transit time (PWTT) have been proposed. The aim of this study was to invasively validate for which kind of PAP (systolic, mean, or diastolic) PWTT is the best surrogate parameter. To assess both PWTT and PAP in six healthy pigs, two pulmonary artery Mikro-Tip™ catheters were inserted into the pulmonary vasculature at a fixed distance: one in the pulmonary artery trunk, and a second one in a distal segment of the pulmonary artery. PAP was raised using the thromboxane A2 analogue U46619 (TXA) and by hypoxic vasoconstriction. There was a negative linear correlation between PWTT and systolic PAP (r = 0.742), mean PAP (r = 0.712) and diastolic PAP (r = 0.609) under TXA. During hypoxic vasoconstriction, the correlation coefficients for systolic, mean, and diastolic PAP were consistently higher than for TXA-induced pulmonary hypertension (r = 0.809, 0.778 and 0.734, respectively). Estimation of sPAP, mPAP, and dPAP using PWTT is feasible, nevertheless slightly better correlation coefficients were detected for sPAP compared to dPAP. In this study we establish the physiological basis for future methods to obtain PAP by non-invasively measured PWTT.

14.
Front Physiol ; 12: 693736, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349666

RESUMO

Transpulmonary driving pressure (DPL) corresponds to the cyclical stress imposed on the lung parenchyma during tidal breathing and, therefore, can be used to assess the risk of ventilator-induced lung injury (VILI). Its measurement at the bedside requires the use of esophageal pressure (Peso), which is sometimes technically challenging. Recently, it has been demonstrated how in an animal model of ARDS, the transpulmonary pressure (PL) measured with Peso calculated with the absolute values method (PL = Paw-Peso) is equivalent to the transpulmonary pressure directly measured using pleural sensors in the central-dependent part of the lung. We hypothesized that, since the PL derived from Peso reflects the regional behavior of the lung, it could exist a relationship between regional parameters measured by electrical impedance tomography (EIT) and driving PL (DPL). Moreover, we explored if, by integrating airways pressure data and EIT data, it could be possible to estimate non-invasively DPL and consequently lung elastance (EL) and elastance-derived inspiratory PL (PI). We analyzed 59 measurements from 20 patients with ARDS. There was a significant intra-patient correlation between EIT derived regional compliance in regions of interest (ROI1) (r = 0.5, p = 0.001), ROI2 (r = -0.68, p < 0.001), and ROI3 (r = -0.4, p = 0.002), and DPL. A multiple linear regression successfully predicted DPL based on respiratory system elastance (Ers), ideal body weight (IBW), roi1%, roi2%, and roi3% (R 2 = 0.84, p < 0.001). The corresponding Bland-Altmann analysis showed a bias of -1.4e-007 cmH2O and limits of agreement (LoA) of -2.4-2.4 cmH2O. EL and PI calculated using EIT showed good agreement (R 2 = 0.89, p < 0.001 and R 2 = 0.75, p < 0.001) with the esophageal derived correspondent variables. In conclusion, DPL has a good correlation with EIT-derived parameters in the central lung. DPL, PI, and EL can be estimated with good accuracy non-invasively combining information coming from EIT and airway pressure.

15.
J Appl Physiol (1985) ; 129(5): 1140-1149, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33054661

RESUMO

This study used electrical impedance tomography (EIT) measurements of regional ventilation and perfusion to elucidate the reasons for severe gas exchange impairment reported in rhinoceroses during opioid-induced immobilization. EIT values were compared with standard monitoring parameters to establish a new monitoring tool for conservational immobilization and future treatment options. Six male white rhinoceroses were immobilized using etorphine, and EIT ventilation variables, venous admixture, and dead space were measured 30, 40, and 50 min after becoming recumbent in lateral position. Pulmonary perfusion mapping using impedance-enhanced EIT was performed at the end of the study period. The measured impedance (∆Z) by EIT was compared between pulmonary regions using mixed linear models. Measurements of regional ventilation and perfusion revealed a pronounced disproportional shift of ventilation and perfusion toward the nondependent lung. Overall, the dependent lung was minimally ventilated and perfused, but remained aerated with minimal detectable lung collapse. Perfusion was found primarily around the hilum of the nondependent lung and was minimal in the periphery of the nondependent and the entire dependent lung. These shifts can explain the high amount of venous admixture and physiological dead space found in this study. Breath holding redistributed ventilation toward dependent and ventral lung areas. The findings of this study reveal important pathophysiological insights into the changes in lung ventilation and perfusion during immobilization of white rhinoceroses. These novel insights might induce a search for better therapeutic options and is establishing EIT as a promising monitoring tool for large animals in the field.NEW & NOTEWORTHY Electrical impedance tomography measurements of regional ventilation and perfusion applied to etorphine-immobilized white rhinoceroses in lateral recumbency revealed a pronounced disproportional shift of the measured ventilation and perfusion toward the nondependent lung. The dependent lung was minimally ventilated and perfused, but still aerated. Perfusion was found primarily around the hilum of the nondependent lung. These shifts can explain the gas exchange impairments found in this study. Breath holding can redistribute ventilation.


Assuntos
Troca Gasosa Pulmonar , Respiração Artificial , Respiração , Animais , Impedância Elétrica , Pulmão , Masculino , Mamíferos , Ventilação Pulmonar , Tomografia
16.
Crit Care Med ; 48(8): 1148-1156, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32697485

RESUMO

OBJECTIVES: Different techniques exist to select personalized positive end-expiratory pressure in patients affected by the acute respiratory distress syndrome. The positive end-expiratory transpulmonary pressure strategy aims to counteract dorsal lung collapse, whereas electrical impedance tomography could guide positive end-expiratory pressure selection based on optimal homogeneity of ventilation distribution. We compared the physiologic effects of positive end-expiratory pressure guided by electrical impedance tomography versus transpulmonary pressure in patients affected by acute respiratory distress syndrome. DESIGN: Cross-over prospective physiologic study. SETTING: Two academic ICUs. PATIENTS: Twenty ICU patients affected by acute respiratory distress syndrome undergoing mechanical ventilation. INTERVENTION: Patients monitored by an esophageal catheter and a 32-electrode electrical impedance tomography monitor underwent two positive end-expiratory pressure titration trials by randomized cross-over design to find the level of positive end-expiratory pressure associated with: 1) positive end-expiratory transpulmonary pressure (PEEPPL) and 2) proportion of poorly or nonventilated lung units (Silent Spaces) less than or equal to 15% (PEEPEIT). Each positive end-expiratory pressure level was maintained for 20 minutes, and afterward, lung mechanics, gas exchange, and electrical impedance tomography data were collected. MEASUREMENTS AND MAIN RESULTS: PEEPEIT and PEEPPL differed in all patients, and there was no correlation between the levels identified by the two methods (Rs = 0.25; p = 0.29). PEEPEIT determined a more homogeneous distribution of ventilation with a lower percentage of dependent Silent Spaces (p = 0.02), whereas PEEPPL was characterized by lower airway-but not transpulmonary-driving pressure (p = 0.04). PEEPEIT was significantly higher than PEEPPL in subjects with extrapulmonary acute respiratory distress syndrome (p = 0.006), whereas the opposite was true for pulmonary acute respiratory distress syndrome (p = 0.03). CONCLUSIONS: Personalized positive end-expiratory pressure levels selected by electrical impedance tomography- and transpulmonary pressure-based methods are not correlated at the individual patient level. PEEPPL is associated with lower dynamic stress, whereas PEEPEIT may help to optimize lung recruitment and homogeneity of ventilation. The underlying etiology of acute respiratory distress syndrome could deeply influence results from each method.


Assuntos
Respiração com Pressão Positiva/métodos , Síndrome do Desconforto Respiratório/terapia , Idoso , Estudos Cross-Over , Impedância Elétrica , Feminino , Humanos , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Monitorização Fisiológica , Medicina de Precisão/métodos , Volume de Ventilação Pulmonar , Tomografia/métodos
17.
J Clin Monit Comput ; 34(1): 7-16, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31152285

RESUMO

Capnography is a first line monitoring system in mechanically ventilated patients. Volumetric capnography supports noninvasive and breath-by-breath information at the bedside using mainstream CO2 and flow sensors placed at the airways opening. This volume-based capnography provides information of important body functions related to the kinetics of carbon dioxide. Volumetric capnography goes one step forward standard respiratory mechanics and provides a new dimension for monitoring of mechanical ventilation. The article discusses the role of volumetric capnography for the clinical monitoring of mechanical ventilation.


Assuntos
Capnografia/métodos , Respiração Artificial/instrumentação , Respiração Artificial/métodos , Animais , Gasometria , Dióxido de Carbono/química , Hemodinâmica , Humanos , Cinética , Pulmão , Monitorização Fisiológica/métodos , Troca Gasosa Pulmonar , Espaço Morto Respiratório , Volume de Ventilação Pulmonar , Relação Ventilação-Perfusão
18.
Respir Care ; 65(1): 11-20, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31615922

RESUMO

BACKGROUND: The difference between Bohr and Enghoff dead space are not well described in ARDS patients. We aimed to analyze the effect of PEEP on the Bohr and Enghoff dead spaces in a model of ARDS. METHODS: 10 pigs submitted to randomized PEEP steps of 0, 5, 10, 15, 20, 25 and 30 cm H2O were evaluated with the use of lung ultrasound images, alveolar-arterial oxygen difference (P(A-a)O2 ), transpulmonary mechanics, and volumetric capnography at each PEEP step. RESULTS: At PEEP ≥ 15 cm H2O, atelectasis and P(A-a)O2 progressively decreased while end-inspiratory transpulmonary pressure (PL), end-expiratory PL, and driving PL increased (all P < .001). Bohr dead space (VDBohr /VT), airway dead space (VDaw /VT), and alveolar dead space (VDalv /VTalv ) reached their highest values at PEEP 30 cm H2O (0.69 ± 0.10, 0.53 ± 0.13 and 0.35 ± 0.06, respectively). At PEEP <15 cm H2O, the increases in atelectasis and P(A-a)O2 were associated with negative end-expiratory PL and highest driving PL. VDBohr /VT and VDaw /VT showed the lowest values at PEEP 0 cm H2O (0.51 ± 0.08 and 0.32 ± 0.08, respectively), whereas VDalv /VTalv increased to 0.27 ± 0.05. Enghoff dead space and its derived VDalv /VTalv showed high values at low PEEPs (0.86 ± 0.02 and 0.79 ± 0.04, respectively) and at high PEEPs (0.84 ± 0.04 and 0.65 ± 0.12), with the lowest values at 15 cm H2O (0.77 ± 0.05 and 0.61 ± 0.11, respectively; all P < .001). CONCLUSIONS: Bohr dead space was associated with lung stress, whereas Enghoff dead space was partially affected by the shunt effect.


Assuntos
Respiração com Pressão Positiva/métodos , Espaço Morto Respiratório , Síndrome do Desconforto Respiratório/terapia , Animais , Capnografia , Pulmão , Modelos Teóricos , Atelectasia Pulmonar , Suínos , Volume de Ventilação Pulmonar
19.
J Clin Monit Comput ; 34(5): 1015-1024, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31654282

RESUMO

To evaluate the use of non-invasive variables for monitoring an open-lung approach (OLA) strategy in bariatric surgery. Twelve morbidly obese patients undergoing bariatric surgery received a baseline protective ventilation with 8 cmH2O of positive-end expiratory pressure (PEEP). Then, the OLA strategy was applied consisting in lung recruitment followed by a decremental PEEP trial, from 20 to 8 cmH2O, in steps of 2 cmH2O to find the lung's closing pressure. Baseline ventilation was then resumed setting open lung PEEP (OL-PEEP) at 2 cmH2O above this pressure. The multimodal non-invasive variables used for monitoring OLA consisted in pulse oximetry (SpO2), respiratory compliance (Crs), end-expiratory lung volume measured by a capnodynamic method (EELVCO2), and esophageal manometry. OL-PEEP was detected at 15.9 ± 1.7 cmH2O corresponding to a positive end-expiratory transpulmonary pressure (PL,ee) of 0.9 ± 1.1 cmH2O. ROC analysis showed that SpO2 was more accurate (AUC 0.92, IC95% 0.87-0.97) than Crs (AUC 0.76, IC95% 0.87-0.97) and EELVCO2 (AUC 0.73, IC95% 0.64-0.82) to detect the lung's closing pressure according to the change of PL,ee from positive to negative values. Compared to baseline ventilation with 8 cmH2O of PEEP, OLA increased EELVCO2 (1309 ± 517 vs. 2177 ± 679 mL) and decreased driving pressure (18.3 ± 2.2 vs. 10.1 ± 1.7 cmH2O), estimated shunt (17.7 ± 3.4 vs. 4.2 ± 1.4%), lung strain (0.39 ± 0.07 vs. 0.22 ± 0.06) and lung elastance (28.4 ± 5.8 vs. 15.3 ± 4.3 cmH2O/L), respectively; all p < 0.0001. The OLA strategy can be monitored using noninvasive variables during bariatric surgery. This strategy decreased lung strain, elastance and driving pressure compared with standard protective ventilatory settings.Clinical trial number NTC03694665.


Assuntos
Cirurgia Bariátrica , Obesidade Mórbida , Humanos , Pulmão , Obesidade Mórbida/cirurgia , Respiração com Pressão Positiva , Respiração
20.
Anesthesiology ; 132(3): 476-490, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31770148

RESUMO

BACKGROUND: Pneumoperitoneum and a steep Trendelenburg position during robot-assisted laparoscopic prostatectomy have been demonstrated to promote a cranial shift of the diaphragm and the formation of atelectasis in the dorsal parts of the lungs. However, neither an impact of higher positive end-expiratory pressure (PEEP) on preserving the ventilation in the dorsal region nor its physiologic effects have been fully examined. The authors hypothesized that PEEP of 15 cm H2O during robot-assisted laparoscopic prostatectomy might maintain ventilation in the dorsal parts and thus improve lung mechanics. METHODS: In this randomized controlled study, 48 patients undergoing robot-assisted laparoscopic prostatectomy were included in the analysis. Patients were assigned to the conventional PEEP (5 cm H2O) group or the high PEEP (15 cm H2O) group. Regional ventilation was monitored using electrical impedance tomography before and after the establishment of pneumoperitoneum and 20° Trendelenburg position during the surgery. The primary endpoint was the regional ventilation in the dorsal parts of the lungs while the secondary endpoints were lung mechanics and postoperative lung function. RESULTS: Compared to that in the conventional PEEP group, the fraction of regional ventilation in the most dorsal region was significantly higher in the high PEEP group during pneumoperitoneum and Trendelenburg position (mean values at 20 min after taking Trendelenburg position: conventional PEEP, 5.5 ± 3.9%; high PEEP, 9.9 ± 4.7%; difference, -4.5%; 95% CI, -7.4 to -1.6%; P = 0.004). Concurrently, lower driving pressure (conventional PEEP, 14.9 ± 2.5 cm H2O; high PEEP, 11.5 ± 2.8 cm H2O; P < 0.001), higher lung dynamic compliance, and better oxygenation were demonstrated in the high PEEP group. Postoperative lung function did not differ between the groups. CONCLUSIONS: Application of a PEEP of 15 cm H2O resulted in more homogeneous ventilation and favorable physiologic effects during robot-assisted laparoscopic prostatectomy but did not improve postoperative lung function.


Assuntos
Decúbito Inclinado com Rebaixamento da Cabeça , Pneumoperitônio Artificial , Respiração com Pressão Positiva , Mecânica Respiratória , Adulto , Idoso , Idoso de 80 Anos ou mais , Impedância Elétrica , Determinação de Ponto Final , Humanos , Laparoscopia , Masculino , Pessoa de Meia-Idade , Período Pós-Operatório , Prostatectomia , Testes de Função Respiratória , Procedimentos Cirúrgicos Robóticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA