Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Discrete Comput Geom ; 69(1): 156-191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36605029

RESUMO

We present criteria for establishing a triangulation of a manifold. Given a manifold M, a simplicial complex  A , and a map H from the underlying space of A to M, our criteria are presented in local coordinate charts for M, and ensure that H is a homeomorphism. These criteria do not require a differentiable structure, or even an explicit metric on M. No Delaunay property of A is assumed. The result provides a triangulation guarantee for algorithms that construct a simplicial complex by working in local coordinate patches. Because the criteria are easily verified in such a setting, they are expected to be of general use.

2.
Discrete Comput Geom ; 66(1): 236-268, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720304

RESUMO

Randomized incremental construction (RIC) is one of the most important paradigms for building geometric data structures. Clarkson and Shor developed a general theory that led to numerous algorithms which are both simple and efficient in theory and in practice. Randomized incremental constructions are usually space-optimal and time-optimal in the worst case, as exemplified by the construction of convex hulls, Delaunay triangulations, and arrangements of line segments. However, the worst-case scenario occurs rarely in practice and we would like to understand how RIC behaves when the input is nice in the sense that the associated output is significantly smaller than in the worst case. For example, it is known that the Delaunay triangulation of nicely distributed points in E d or on polyhedral surfaces in E 3 has linear complexity, as opposed to a worst-case complexity of Θ ( n ⌊ d / 2 ⌋ ) in the first case and quadratic in the second. The standard analysis does not provide accurate bounds on the complexity of such cases and we aim at establishing such bounds in this paper. More precisely, we will show that, in the two cases above and variants of them, the complexity of the usual RIC is O ( n log n ) , which is optimal. In other words, without any modification, RIC nicely adapts to good cases of practical value. At the heart of our proof is a bound on the complexity of the Delaunay triangulation of random subsets of ε -nets. Along the way, we prove a probabilistic lemma for sampling without replacement, which may be of independent interest.

3.
J Appl Comput Topol ; 3(1): 29-58, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31633006

RESUMO

In this paper we discuss three results. The first two concern general sets of positive reach: we first characterize the reach of a closed set by means of a bound on the metric distortion between the distance measured in the ambient Euclidean space and the shortest path distance measured in the set. Secondly, we prove that the intersection of a ball with radius less than the reach with the set is geodesically convex, meaning that the shortest path between any two points in the intersection lies itself in the intersection. For our third result we focus on manifolds with positive reach and give a bound on the angle between tangent spaces at two different points in terms of the reach and the distance between the two points.

4.
Med Image Comput Comput Assist Interv ; 12(Pt 2): 283-90, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20426123

RESUMO

The problem of generating realistic computer models of objects represented by 3D segmented images is important in many biomedical applications. Labelled 3D images impose particular challenges for meshing algorithms because multi-material junctions form features such as surface pacthes, edges and corners which need to be preserved into the output mesh. In this paper, we propose a feature preserving Delaunay refinement algorithm which can be used to generate high-quality tetrahedral meshes from segmented images. The idea is to explicitly sample corners and edges from the input image and to constrain the Delaunay refinement algorithm to preserve these features in addition to the surface patches. Our experimental results on segmented medical images have shown that, within a few seconds, the algorithm outputs a tetrahedral mesh in which each material is represented as a consistent submesh without gaps and overlaps. The optimization property of the Delaunay triangulation makes these meshes suitable for the purpose of realistic visualization or finite element simulations.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Modelos Biológicos , Reconhecimento Automatizado de Padrão/métodos , Simulação por Computador , Análise de Elementos Finitos , Humanos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
C R Biol ; 325(4): 321-6, 2002 Apr.
Artigo em Francês | MEDLINE | ID: mdl-12161911

RESUMO

Due to their numerous advantages, mainly in terms of patient benefit, mini-invasive robotically assisted interventions are gaining in importance in various surgical fields. However, this conversion has its own challenges that stem from both its novelty and complexity. In this paper we propose to accompany the surgeons in their transition, by offering an integrated environment that enables them to make better use of this new technology. The proposed system is patient-dependent, and enables the planning, validation, simulation, teaching and archiving of robotically assisted interventions. The approach is illustrated for a coronary bypass graft using the daVinci tele-operated robot.


Assuntos
Procedimentos Cirúrgicos Cardíacos/métodos , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Robótica/métodos , Simulação por Computador , Ponte de Artéria Coronária/métodos , Humanos , Processamento de Imagem Assistida por Computador , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA