Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Chemosphere ; : 142729, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971438

RESUMO

17 global Sustainable Development Goals (SDGs) were established through the adoption of the 2030 Agenda for Sustainable Development by all United Nations members. Clean water and sanitation (SDG 6) and industry, innovation, and infrastructure (SDG 9) are the SDGs focus of this work. Of late, various new companies delivering metal-organic frameworks (MOFs) have blossomed and moved the field of adsorption utilizing MOFs to another stage. Inside this unique circumstance, this article aims to catch recent advancements in the field of MOFs and the utilizations of MOFs relate to the expulsion of arising contaminations that present huge difficulties to water quality because of their steadiness and possible damage to environments and human wellbeing. Customary water treatment techniques regularly neglect to eliminate these poisons, requiring the advancement of novel methodologies. This study overviews engineering techniques for controlling MOF characteristics for better flexibility, stability, and surface area. A current report on MOFs gathered new perspectives that are amicably discussed in emergent technologies and extreme applications towards environmental sectors. Various applications in many fields that exploit MOFs are being fostered, including gas storage, fluid separation, adsorbents, catalysis, medication delivery, and sensor utilizations. The surface area of a wide range of MOFs ranges from 103 to 104 m2/g, which exceeds the standard permeability of several material designs. MOFs with extremely durable porosity are more significant in their assortment and variety than other classes of porous materials. The work outlines the difficulties encountered in the synthesis steps and suggests ways to make use of MOFs' value in a variety of contexts. This caters to creating multivariate systems enclosed with numerous functionalities, leading to the synthesis of MOFs that offer a synergistic blend of in-built properties and exclusive applications. Additionally, the MOF-related future development opportunities and challenges are discussed.

2.
Med Oncol ; 41(7): 182, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900329

RESUMO

Interleukin-6 (IL-6), a pro-inflammatory cytokine, plays a crucial role in host immune defense and acute stress responses. Moreover, it modulates various cellular processes, including proliferation, apoptosis, angiogenesis, and differentiation. These effects are facilitated by various signaling pathways, particularly the signal transducer and activator of transcription 3 (STAT3) and Janus kinase 2 (JAK2). However, excessive IL-6 production and dysregulated signaling are associated with various cancers, promoting tumorigenesis by influencing all cancer hallmarks, such as apoptosis, survival, proliferation, angiogenesis, invasiveness, metastasis, and notably, metabolism. Emerging evidence indicates that selective inhibition of the IL-6 signaling pathway yields therapeutic benefits across diverse malignancies, such as multiple myeloma, prostate, colorectal, renal, ovarian, and lung cancers. Targeting key components of IL-6 signaling, such as IL-6Rs, gp130, STAT3, and JAK via monoclonal antibodies (mAbs) or small molecules, is a heavily researched approach in preclinical cancer studies. The purpose of this study is to offer an overview of the role of IL-6 and its signaling pathway in various cancer types. Furthermore, we discussed current preclinical and clinical studies focusing on targeting IL-6 signaling as a therapeutic strategy for various types of cancer.


Assuntos
Interleucina-6 , Neoplasias , Transdução de Sinais , Humanos , Interleucina-6/metabolismo , Interleucina-6/antagonistas & inibidores , Neoplasias/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Animais , Progressão da Doença , Fator de Transcrição STAT3/metabolismo , Antineoplásicos/uso terapêutico
3.
Chemosphere ; : 142655, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908444

RESUMO

Lead is used in many industries such as refining, mining, battery manufacturing, smelting. Releases of lead from these industries is one of the major public health concerns due to widespread persistence in the environment and its resulting poisoning character. In this work, the castor seed shell (CSS) waste was exploited for preparing a beneficial bio-adsorbent for removal of Pb(II) ions from water. The raw CSS was modified with H3PO4 at different acid concentrations, impregnation ratios, activation times, and temperatures. An optimum adsorption capacity was observed for CSS modified with 2 M acid, 5 mL g-1 solid to liquid ratio, treated at 95 °C for 160 min. Exploiting acid modification, the SEM, XRD, and FTIR analyses show some alterations in functional groups and the surface morphology of the biomass. The impacts of physiochemical variables (initial lead ions concentration, pH, adsorbent dose and adsorption time) on the lead removal percentage were investigated, using response surface methodology (RSM). Maximum removal of 72.26% for raw CSS and 97.62% for modified CSS were obtained at an initial lead concentration (50 mg L-1), pH (5.7), adsorption time (123 min) and adsorbent dosage (1.1 g/100 mL). Isothermal and kinetics models were fitted to adsorption equilibrium data and kinetics data for the modified CSS and the adsorption system was evaluated thermodynamically and from the energy point of view. Isothermal scrutinization indicated the mono-layer nature of adsorption, and the kinetics experimental outcomes best fitted with the pseudo-second-order, implying that the interaction of lead ions and hot acid-treated CSS was the rate-controlling phenomenon of process. Overall, results illustrated that the hot acid-treated biomass-based adsorbent can be considered as an alternative bio-adsorbent for removing lead from water media.

4.
Talanta ; 276: 126292, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38795646

RESUMO

In recent decades, analytical techniques have increasingly focused on the precise quantification. Achieving this goal has been accomplished with conventional analytical approaches that typically require extensive pretreatment methods, significant reagent usage, and expensive instruments. The need for rapid, simple, and highly selective identification platforms has become increasingly pronounced. Molecularly imprinted polymer (MIP) has emerged as a promising avenue for developing advanced sensors that can potentially surpass the limitations of conventional detection methods. In recent years, the application of MIP-silica materials-based sensors has garnered significant attention owing to their distinctive characteristics. These types of probes hold a distinct advantage in their remarkable stability and durability, all of which provide a suitable sensing platform in severe environments. Moreover, the substrate composed of silica materials offers a vast surface area for binding, thereby facilitating the efficient detection of even minuscule concentrations of targets. As a result, sensors based on MIP-silica materials have the potential to be widely applied in various industries, including medical diagnosis, and food safety. In the present review, we have conducted an in-depth analysis of the latest research developments in the field of MIPs-silica materials based sensors, with a focus on succinctly summarizing and elucidating the most crucial findings. This is the first comprehensive review of integration MIPs with silica materials in electrochemical (EC) and optical probes for biomedical analysis and food safety.


Assuntos
Inocuidade dos Alimentos , Polímeros Molecularmente Impressos , Dióxido de Silício , Dióxido de Silício/química , Polímeros Molecularmente Impressos/química , Técnicas Biossensoriais/métodos , Humanos , Impressão Molecular , Técnicas Eletroquímicas/métodos
5.
Environ Res ; 252(Pt 3): 118976, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38705451

RESUMO

This study evaluates Alum sludge from drinking water treatment plants for the efficient and cost-effective removal of phosphates from aqueous solutions. Extensive characterization and batch experiments have established that optimal phosphate removal was achieved with a sludge dosage of 20 g L-1 (at an initial phosphate concentration of 100 mg L-1), a pH of 5, a temperature of 23 °C, and a stirring speed of 200 rpm. These conditions significantly reduced phosphate levels, ensuring compliance with legal discharge limits. The Langmuir isotherm, pseudo-second-order kinetic and intraparticle diffusion models best described the adsorption process, highlighting the spontaneous and endothermic nature of the phenomenon. The sludge effectively reduced phosphate concentrations to acceptable levels when applied to dairy effluents. This study underscores the potential of Alum sludge as a viable solution for phosphate management in environmental cleanup efforts.


Assuntos
Compostos de Alúmen , Indústria de Laticínios , Fosfatos , Esgotos , Adsorção , Fosfatos/química , Esgotos/química , Compostos de Alúmen/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Purificação da Água/métodos , Cinética , Modelos Químicos
6.
Cell Biochem Funct ; 42(3): e3993, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38532685

RESUMO

About 70% of cases of breast cancer are compromised by Estrogen-positive breast cancer. Through its regulation of several processes, including cell proliferation, cell cycle progression, and apoptosis, Estrogen signaling plays a pivotal role in the genesis and progression of this particular kind of breast cancer. One of the best treatment strategies for treating Estrogen-positive breast cancer is blocking Estrogen signaling. However, patients' treatment failure is mainly caused by the emergence of resistance and metastases, necessitating the development of novel therapeutic targets. Numerous studies have shown long noncoding RNAs (lncRNAs) to play a role in Estrogen-mediated carcinogenesis. These lncRNAs interact with co-regulators and the Estrogen signaling cascade components, primarily due to Estrogen activation. Vimentin and E-cadherin are examples of epithelial-to-mesenchymal transition markers, and they regulate genes involved in cell cycle progression, such as Cyclins, to affect the growth, proliferation, and metastasis of Estrogen-positive breast cancer. Furthermore, a few of these lncRNAs contribute to developing resistance to chemotherapy, making them more desirable targets for enhancing results. Thus, to shed light on the creation of fresh approaches for treating this cancer, this review attempts to compile recently conducted studies on the relationship between lncRNAs and the advancement of Estrogen-positive breast cancer.


Assuntos
Neoplasias da Mama , RNA Longo não Codificante , Humanos , Feminino , Neoplasias da Mama/patologia , RNA Longo não Codificante/genética , Estrogênios , Proliferação de Células/genética , Receptores de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica
7.
Environ Pollut ; 348: 123745, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38499169

RESUMO

The article discusses the removal of methylene blue (MB) dye, a common cationic dye used in the textile industry, from aqueous solutions through an adsorption process. The use of porous components as adsorbents are shown to facilitate complete separation after the process is completed. The substrate was synthesized by connecting zinc copper ferrite (ZnCuFe2O4), polyethyleneimine (PEI), and Graphene Oxide (GO) sheets to MCM-48, which is a mesoporous material. The surface of MCM-48 was modified using CPTMS, which created an O-Si-Cl bridge, thereby improving the adsorption rate. The substrate was shown to have suitable sites for electrostatic interactions and creating hydrogen bonds with MB. The adsorption process from the Freundlich isotherm (R2 = 0.9224) and the pseudo-second-order diagram (R2 = 0.9927) demonstrates the adsorption of several layers of dye on the heterogeneous surface of the substrate. The synthesized substrate was also shown to have good bactericidal activity against E. coli and S. aureus bacterial strain. Furthermore, the substrate maintained its initial ability to adsorb MB dye for four consecutive cycles. The research resulted that ZnCuFe2O4@MCM-48/PEI-GO substrate has the potential for efficient and economical removal of MB dye from aqueous solutions (R = 88.82%) (qmax = 294.1176 mg. g-1), making it a promising solution for the disposal of harmful industrial waste.


Assuntos
Compostos Férricos , Grafite , Nanopartículas , Poluentes Químicos da Água , Purificação da Água , Dióxido de Silício , Polietilenoimina , Cobre , Zinco , Escherichia coli , Porosidade , Staphylococcus aureus , Antibacterianos/farmacologia , Azul de Metileno/química , Purificação da Água/métodos , Adsorção , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio
8.
Med Oncol ; 41(3): 69, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38311682

RESUMO

Pre-messenger RNA molecules are back-spliced to create circular RNAs, which are non-coding RNA molecules. After a thorough investigation, it was discovered that these circRNAs have critical biological roles. CircRNAs have a variety of biological functions, including their ability to operate as microRNA sponges, interact with proteins to alter their stabilities and activities, and provide templates for the translation of proteins. Evidence supports a link between the emergence of numerous diseases, including various cancer types, and dysregulated circRNA expression. It is commonly known that a significant contributing element to cancer development is the disruption of numerous molecular pathways essential for preserving cellular and tissue homeostasis. The dysregulation of multiple biological processes is one of the hallmarks of cancer, and the molecular pathways linked to these processes are thought to be promising targets for therapeutic intervention. The biological and carcinogenic effects of circRNAs in the context of cancer are thoroughly reviewed in this article. Specifically, we highlight circRNAs' involvement in signal transduction pathways and their possible use as novel biomarkers for the early identification and prognosis of human cancer.


Assuntos
MicroRNAs , Neoplasias , Humanos , RNA Circular/genética , Neoplasias/genética , Neoplasias/patologia , RNA Mensageiro , Transdução de Sinais/genética
9.
Phytother Res ; 38(3): 1358-1366, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38200617

RESUMO

Findings on the effect of walnut consumption on endothelial function are conflicting. Therefore, the present systematic review and meta-analysis summarized available trials in this regard. A systematic search was performed in online databases including PubMed-Medline, Scopus, and ISI Web of Science up to October 2023. Articles that reported the effect of walnut intake on flow-mediated dilation (FMD), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and stimulus-adjusted response measure (SARM) were included. Random effects models for a weighted mean difference (WMD) or standardized mean difference (SMD) were used to test for the overall effect. Six eligible trials were analyzed (250 participants). Walnut intake significantly increased FMD (WMD: 0.94%, 95% CI: 0.12 to 1.75; p = 0.02). However, meta-analysis could not show any beneficial effect of walnut intake on ICAM-1 (SMD: -0.23, 95% CI: -0.68 to 0.22; p = 0.31), VCAM-1 (SMD: -0.02, 95% CI: -1.38 to 1.34; p = 0.97), and SARM (WMD: 0.01%, 95% CI: -0.01 to 0.04; p = 0.28). In conclusion, the present meta-analysis suggests that walnuts may reduce cardiovascular disease risk by improving FMD. However, further studies should be performed on adults to determine the effect of walnut intake on endothelial function.


Assuntos
Juglans , Adulto , Humanos , Molécula 1 de Adesão Intercelular , Nozes , Ensaios Clínicos Controlados Aleatórios como Assunto , Molécula 1 de Adesão de Célula Vascular
10.
Cell Biochem Funct ; 42(1): e3921, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38269511

RESUMO

This comprehensive article explores the complex field of glioma treatment, with a focus on the important roles of non-coding RNAsRNAs (ncRNAs) and exosomes, as well as the potential synergies of immunotherapy. The investigation begins by examining the various functions of ncRNAs and their involvement in glioma pathogenesis, progression, and as potential diagnostic biomarkers. Special attention is given to exosomes as carriers of ncRNAs and their intricate dynamics within the tumor microenvironment. The exploration extends to immunotherapy methods, analyzing their mechanisms and clinical implications in the treatment of glioma. By synthesizing these components, the article aims to provide a comprehensive understanding of how ncRNAs, exosomes, and immunotherapy interact, offering valuable insights into the evolving landscape of glioma research and therapeutic strategies.


Assuntos
Exossomos , Vesículas Extracelulares , Glioma , Humanos , Imunoterapia , Glioma/terapia , Microambiente Tumoral
11.
Pathol Res Pract ; 254: 155084, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38244434

RESUMO

This article undertakes a comprehensive investigation of ovarian cancer, examining the complex nature of this challenging disease. The main focus is on understanding the role of long non-coding RNAs (lncRNAs) in the context of ovarian cancer (OC), and their regulatory functions in disease progression. Through extensive research, the article identifies specific lncRNAs that play significant roles in the intricate molecular processes of OC. Furthermore, the study examines the signaling pathways involved in the development of OC, providing a detailed comprehension of the underlying molecular mechanisms. By connecting lncRNA dynamics with signaling pathways, this exploration not only advances our understanding of ovarian cancer but also reveals potential targets for therapeutic interventions. The findings open up opportunities for targeted treatments, highlighting the importance of personalized approaches in addressing this complex disease and driving progress in ovarian cancer research and treatment strategies.


Assuntos
Neoplasias Ovarianas , RNA Longo não Codificante , Humanos , Feminino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Ovarianas/genética , Transdução de Sinais/genética , Progressão da Doença
15.
Crit Rev Food Sci Nutr ; 63(14): 2119-2128, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34468230

RESUMO

Shorter telomere length is associated with numerous comorbidities; central obesity might trigger leukocyte telomere shortening; in the current meta-analysis we evaluated the association of central obesity with leukocyte telomere length among adults. A systematic search from Scopus, PubMed, Embase and Proquest electronic databases up to May 2021 was done. The final screening, provided five articles to be included in final meta-analysis. Those in the highest category of telomere length had 3.72 cm lower waist circumference (WC) compared with those in the lowest category (WMD=-3.718; CI=-7.180, -0.257 P = 0.035; I2 = 95.4%). Also, those in the highest LTL category had 0.02 lower waist to hip ratio (WHR) compared with those in the lowest category, although this association was not significant (WMD: -0.02; CI=-0.04, 0.01; P = 0.19; I2= 90.7%). In quality assessment of included studies, all of the studies had moderate or high quality score and there was no study with poor quality. Higher leukocyte telomere length was accompanied with lower WC among adults. This association was not significant for difference in WHR. Because of the high heterogeneity values and also because of the observational design of included studies, the inference of causality of these associations needs further investigations.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2021.1971155 .


Assuntos
Obesidade Abdominal , Obesidade , Humanos , Adulto , Fatores de Risco , Índice de Massa Corporal , Leucócitos , Telômero
16.
J Biomol Struct Dyn ; 41(10): 4253-4271, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35446232

RESUMO

COVID-19 patients have shown overexpressed serum levels of several pro-inflammatory cytokines, leading to a high mortality rate due to numerous complications. Also, previous studies demonstrated that the metronidazole (MTZ) administration reduced pro-inflammatory cytokines and improved the treatment outcomes for inflammatory disorders. However, the effect and mechanism of action of MTZ on cytokines have not been studied yet. Thus, the current study aimed to identify anti-cytokine therapeutics for the treatment of COVID-19 patients with cytokine storm. The interaction of MTZ with key cytokines was investigated using molecular docking studies. MTZ-analogues, and its structurally similar FDA-approved drugs were also virtually screened against interleukin-12 (IL-12). Moreover, their mechanism of inhibition regarding IL-12 binding to IL-12 receptor was investigated by measuring the change in volume and area. IL-12-metronidazole complex is found to be more stable than all other cytokines under study. Our study also revealed that the active sites of IL-12 are inhibited from binding to its target, IL-12 receptor, by modifying the position of the methyl and hydroxyl functional groups in MTZ. Three MTZ analogues, metronidazole phosphate, metronidazole benzoate, 1-[1-(2-Hydroxyethyl)-5-nitroimidazol-2-yl]-N-methylmethanimine-oxide, and two FDA-approved drugs acyclovir (ACV), and tetrahydrobiopterin (THB) were also found to prevent binding of IL-12 to IL-12 receptor similar to MTZ by changing the surface and volume of IL-12 upon IL-12-drug/ligand complex formation. According to the RMSD results, after 100 ns MD simulations of human IL-12-MTZ/ACV/THB drug complexes, it was also observed that each complex was swinging within a few Å compared to their corresponding docking poses, indicating that the docking poses were reliable. The current study demonstrates that three FDA-approved drugs, namely, metronidazole, acyclovir and tetrahydrobiopterin, are potential repurposable treatment options for overexpressed serum cytokines found in COVID-19 patients. Similar approach is also useful to develop therapeutics against other human disorders.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Metronidazol , Humanos , Metronidazol/farmacologia , Metronidazol/uso terapêutico , Metronidazol/química , Interleucina-12 , Simulação de Acoplamento Molecular , Citocinas
17.
Curr Med Chem ; 30(33): 2726-3742, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36281859

RESUMO

We are experiencing a revolution in regenerative medicine. Recent developments in organoid technology have provided unique opportunities for studying human biology and diseases. Indeed, organoid models have revolutionized the in vitro culture tools for biomedical research by creating robust three-dimensional (3D) architecture to recapitulate the primary tissues' cellular heterogeneity, structure, and functions. Such organoid technology enables researchers to re-create human organs and diseases model in a culture dish. It thus holds excellent promises for many translational applications such as regenerative medicine, drug discovery, and precision medicine. This review summarizes the current knowledge on the progression and promotion of organoid models, particularly with the heart disease approach. We discuss the usefulness of clinical applications of cardiac organoids and ultimately highlight the currently advanced therapeutic strategies in vitro model of organoids aimed at personalizing heart disease treatment.


Assuntos
Pesquisa Biomédica , Cardiopatias , Humanos , Medicina Regenerativa/métodos , Organoides , Coração , Cardiopatias/terapia
18.
Talanta ; 252: 123769, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36041314

RESUMO

Nowadays, the integration of conventional analytical approaches with smartphones has been developed novel, emerging and affordable devices for improving on-site detection platforms in the fields of food safety. Smartphone-based aptasensors as the next generation of portable aptasensing technique has attracted considerable attention as it offers a semi-automated user interface that can be exploited by inexpert characters. Wireless data transferability is an undeniable advantage that home-testing platforms have as well as it can suggest high computational power. In addition, these types of biodevices can provide real-time monitoring in terms of exchanging digital networks in real-time. To elaborate, the ability of smartphones to connect through the Internet is one of the most critical advantages of smartphone-based aptasensor that can be uploaded to Cloud databases and results can be disseminated as spatio-temporal maps across the globe. This review focused on the recent progress and technical breakthroughs of aptasensor on the smartphone as a groundbreaking enterprise in the field of biochemical analysis, importantly in the aspect of the combination of different types of biosensors including electrochemical, optical and colorimetric. In our opinion, this review can broaden our understanding of using smartphones as a portable sensing approach by addressing the current challenges and future perspectives.


Assuntos
Técnicas Biossensoriais , Smartphone , Solo , Colorimetria/métodos , Técnicas Biossensoriais/métodos , Contaminação de Alimentos
19.
Curr Mol Pharmacol ; 16(4): 507-516, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36056861

RESUMO

Modafinil (MOD, 2-diphenyl-methyl-sulphinil-2-acetamide) is a stimulant-like medicine used to treat narcolepsy. Off-label uses include improving cognitive ability in the course of other diseases. This review aims to discuss findings demonstrating the memory and learningenhancing activity of MOD in experimental and clinical studies. We included behavioral evaluations alongside the effects of MOD at the cellular and molecular level. MOD in different animal disease models exerted beneficial effects on induced memory and learning impairment, which in some cases were accompanied by modulation of neurotransmitter pathways or neuroplastic capabilities, reducing oxidative stress, or expression of synaptic proteins. Individuals treated with MOD showed improved memory and learning skills in different conditions. These effects were associated with regulating brain activity in some participants, confirmed by functional magnetic resonance imaging. Presented herein, data support the use of MOD in treating memory and learning deficits in various disease conditions.


Assuntos
Compostos Benzidrílicos , Animais , Modafinila/farmacologia , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/uso terapêutico
20.
Trop Anim Health Prod ; 55(1): 22, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36547736

RESUMO

This study aimed to evaluate the protective effects of quercetin on the biochemical parameters, immunity, and growth performance in malathion-exposed common carp, Cyprinus carpio. The methods six experimental groups, including the control group, fish exposed to concentrations of 1.04 and 2.08 mg/l malathion, fish supplemented with quercetin (200 mg/kg diet), and fish treated with quercetin + malathion for 21 days, were considered for the experiment. After the feeding period, in results the activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione S-transferase (GST) were significantly decreased in the hepatocyte, while malondialdehyde (MDA) content increased in response to malathion. Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities and glucose, cortisol, and urea levels significantly increased after exposure to malathion. Exposure of fish to malathion-induced decreases in protease, lysozyme, and alternative complement (ACH50) activities and total immunoglobulin (total Ig) in the mucosa. Changes in other parameters were different depending on malathion concentrations. The supplementation of fish with quercetin had no ameliorating effect on the malathion-related alternations of mucosal lysozyme and protease activities. However, quercetin ameliorated the depressing effects of malathion on biochemical and immunological parameters. Changes in the growth performance and hematological parameters indicated the toxic effect of malathion. In conclusion, quercetin could efficiently reduce the toxic effects of malathion on the biochemical, immune, and hematological parameters of the common carp.


Assuntos
Carpas , Malation , Animais , Malation/toxicidade , Quercetina/farmacologia , Carpas/metabolismo , Muramidase/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Dieta , Peptídeo Hidrolases , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA