Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 12(11)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36422246

RESUMO

Polymorphisms in CYP2C9 can significantly interfere with the pharmacokinetic (PK) and pharmacodynamic (PD) parameters of nonsteroidal anti-inflammatory drugs (NSAIDs), including naproxen. The present research aimed to study the PK/PD parameters of naproxen and its metabolite, 6-O-desmethylnaproxen, associated with allelic variations of CYP2C9. In our study, a rapid, selective, and sensitive Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) method was developed and validated for the determination of naproxen and its main metabolite, 6-O-desmethylnaproxen, in oral fluid. Naproxen and its main metabolite were separated using a Shim-Pack XR-ODS 75L × 2.0 column and C18 pre-column at 40 °C using a mixture of methanol and 10 mM ammonium acetate (70:30, v/v), with an injection flow of 0.3 mL/min. The total analytical run time was 3 min. The volunteers, previously genotyped for CYP2C9 (16 ancestral­CYP2C9 *1 and 12 with the presence of polymorphism­CYP2C9 *2 or *3), had their oral fluids collected sequentially before and after taking a naproxen tablet (500 mg) at the following times: 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 5, 6 8, 11, 24, 48, 72 and 96 h. Significant differences in the PK parameters (* p < 0.05) of naproxen in the oral fluid were: Vd/F (L): 98.86 (55.58−322.07) and 380.22 (261.84−1097.99); Kel (1/h): 0.84 (0.69−1.34) and 1.86 (1.09−4.06), in ancestral and mutated CYP2C9 *2 and/or *3, respectively. For 6-O-desmethylnaproxen, no PK parameters were significantly different between groups. The analysis of prostaglandin E2 (PGE2) proved to be effective and sensitive for PD parameters analysis and showed higher levels in the mutated group (p < 0.05). Both naproxen and its main metabolite, 6-O-desmethylnaproxen, and PGE2 in oral fluid can be effectively quantified using LC-MS/MS after a 500 mg oral dose of naproxen. Our method proved to be effective and sensitive to determine the lower limit of quantification of naproxen and its metabolite, 6-O-desmethylnaproxen, in oral fluid (2.4 ng/mL). All validation data, such as accuracy, precision, and repeatability intra- and inter-assay, were less than 15%. Allelic variations of CYP2C9 may be considered relevant in the PK of naproxen and its main metabolite, 6-O-desmethylnaproxen.

2.
Braz Dent J ; 32(1): 3-8, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33913999

RESUMO

Saliva is widely used for clinical and laboratory analysis. This study proposed to use DNA extracted from saliva for genotyping and pharmacokinetics of piroxicam. A fast and efficient genotyping method was used to determine relevant allelic variants of CYP2C9 (*2 and *3), since genetic factors can influence in non-steroidal anti-inflammatory drugs (NSAIDs) metabolization. DNA Extract All Reagents Kit® was used for DNA extraction and genotyping was performed using TaqMan® GTXpress™ Master Mix, SNP genotyping assays and a Viia7 Real-Time PCR system. Volunteers performed sequential collections of saliva samples before and after taking a single dose of piroxicam (0.25 to 72 h) which were used for pharmacokinetics assays. Piroxicam concentrations were analyzed using LC-MS/MS. Sixty-six percent of volunteers were ancestral homozygous (CYP2C9*1/*1), and 34% showed one or both polymorphisms. Of these 34%, 22 individuals showed CYP2C9*2 polymorphism, 8 CYP2C9*3, and 4 CYP2C9*2/*3. Piroxicam pharmacokinetics were performed in 5 subjects. Areas under the curve (AUC0-t(h*ng/mL)) for CYP2C9*1/*1, *1/*2 and *1/*3 were, respectively, 194.33±70.93, 166 and 303. Maximum concentrations (Cmax(ng/mL)) for these genotypes were respectively 6.46±2.56, 4.3 and 10.2. Saliva sampling was a very effective matrix for both pharmacogenetic and pharmacokinetic tests, ensuring the speed of the procedure and the well-being and agreement of the participants. Once having the knowledge about the slow and fast metabolizers, it is possible to make an adequate prescription in order to avoid the adverse effects of the medication and to guarantee greater analgesic comfort to the patients respectively.


Assuntos
Farmacogenética , Saliva , Cromatografia Líquida , Citocromo P-450 CYP2C9/genética , Prescrições de Medicamentos , Humanos , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA