RESUMO
Wound healing of the oral mucosa is an urgent problem in modern dental surgical practice. This research article presents and compares the findings of the investigations of the structural, physicochemical, and biological characteristics of two types of polymeric membranes used for the regeneration of oral mucosa. The membranes were prepared from poly(tetrafluoroethylene) (PTFE) and a copolymer of vinylidene fluoride and tetrafluoroethylene (VDF-TeFE) and analyzed via scanning electron microscopy, atomic force microscopy, X-ray diffraction analysis, and Fourier transform infrared spectroscopy. Investigation results obtained indicate that both types of membranes are composed of thin fibers: (0.57 ± 0.25) µm for PTFE membranes and (0.43 ± 0.14) µm for VDF-TeFE membranes. Moreover, the fibers of VDF-TeFE membranes exhibit distinct piezoelectric properties, which are confirmed by piezoresponse force microscopy and X-ray diffraction. Both types of membranes are hydrophobic: (139.7 ± 2.5)° for PTFE membranes and (133.5 ± 2.0)° for VDF-TeFE membranes. In vitro assays verify that both membrane types did not affect the growth and division of mice fibroblasts of the 3T3-L1 cell line, with a cell viability in the range of 88-101%. Finally, in vivo comparative experiments carried out using Wistar rats demonstrate that the piezoelectric VDF-TeFE membranes have a high ability to regenerate oral mucosa.
RESUMO
Flexible electronics have sparked significant interest in the development of electrically conductive polymer-based composite materials. While efforts are being made to fabricate these composites through laser integration techniques, a versatile methodology applicable to a broad range of thermoplastic polymers remains elusive. Moreover, the underlying mechanisms driving the formation of such composites are not thoroughly understood. Addressing this knowledge gap, our research focuses on the core processes determining the integration of reduced graphene oxide (rGO) with polymers to engineer coatings that are not only flexible and robust but also exhibit electrical conductivity. Notably, we have identified a particular range of laser power densities (between 0.8 and 1.83 kW/cm2), which enables obtaining graphene polymer composite coatings for a large set of thermoplastic polymers. These laser parameters are primarily defined by the thermal properties of the polymers as confirmed by thermal analysis as well as numerical simulations. Scanning electron microscopy with elemental analysis and X-ray photoelectron spectroscopy showed that conductivity can be achieved by two mechanisms-rGO integration and polymer carbonization. Additionally, high-speed videos allowed us to capture the graphene oxide (GO) modification and melt pool formation during laser processing. The cross-sectional analysis of the laser-processed samples showed that the convective flows are present in the polymer substrate explaining the observed behavior. Moreover, the practical application of our research is exemplified through the successful assembly of a conductive wristband for wearable devices. Our study not only fills a critical knowledge gap but also offers a tangible illustration of the potential impact of laser-induced rGO-polymer integration in materials science and engineering applications.
RESUMO
Biodegradable polymeric fibrous non-woven materials are widely used type of scaffolds for tissue engineering. Their morphology and properties could be controlled by composition and fabrication technology. This work is aimed at development of fibrous scaffolds from a multicomponent polymeric system containing biodegradable synthetic (polylactide, polycaprolactone) and natural (gelatin, chitosan) components using different methods of non-woven mats fabrication: electrospinning and electro-assisted solution blow spinning. The effect of the fabrication technique of the fibrous materials onto their morphology and properties, including the ability to support adhesion and growth of cells, was evaluated. The mats fabricated using electrospinning technology consist of randomly oriented monofilament fibers, while application of solution blow spinning gave a rise to chaotically arranged multifilament fibers. Cytocompatibility of all fabricated fibrous mats was confirmed using in vitro analysis of metabolic activity, proliferative capacity and morphology of NIH 3T3 cell line. Live/Dead assay revealed the formation of the highest number of cell-cell contacts in the case of multifilament sample formed by electro-assisted solution blow spinning technology.
RESUMO
The surface hydrophobicity of poly(ε-caprolactone) electrospun scaffolds prevents their interactions with cells and tissue integration. Although plasma treatment of scaffolds enhances their hydrophilicity, this effect is temporary, and the hydrophobicity of the scaffolds is restored in about 30 days. In this communication, we report a method for hydrophilization of poly(ε-caprolactone) electrospun scaffolds for more than 6 months. To that end, diamond-like coating was deposited on the surface of the scaffolds in a nitrogen atmosphere using pulsed vacuum arc deposition with sputtering of graphite target. This approach allows for a single-side hydrophilization of the scaffold (water contact angle of 22 ± 3° vs. 126 ± 2° for pristine PCL scaffold) and preserves its structure. With increased nitrogen pressure in the chamber, sp3-hybridized carbon content decreased twice (sp2/sp3 ratio decreased from 1.06 to 0.52), which demonstrates the possibility of tailoring the content of carbon in sp2 and sp3 hybridization state. Nitrogen content in the deposited coatings was found at 16.1 ± 0.9 at.%. In vitro tests with fibroblast cell culture did not reveal any cytotoxic compounds in sample extracts.
RESUMO
Modification by Arg-Gly-Asp (RGD) peptides is a promising approach to improve the biocompatibility of biodegradable vascular patches for arteriotomy. In this study, we evaluated the performance of vascular patches electrospun using a blend of polycaprolactone (PCL) and polyhydroxybutyrate/valerate (PHBV) and additionally modified with RGDK, AhRGD, and c[RGDFK] peptides using 1,6-hexamethylenediamine or 4,7,10-trioxa-1,13-tridecanediamine (TTDDA) linkers. We examined mechanical properties and hemocompatibility of resulting patches before implanting them in rat abdominal aortas to assess their performance in vivo. Patches were explanted 1, 3, 6, and 12 months postoperation followed by histological and immunofluorescence analyses. Patches manufactured from the human internal mammary artery or commercially available KemPeriplas-Neo xenopericardial patches were used as a control. The tensile strength and F max of KemPeriplas-Neo patches were 4- and 16.7-times higher than those made of human internal mammary artery, respectively. Both RGD-modified and unmodified PHBV/PCL patches demonstrated properties similar to a human internal mammary artery patch. Regardless of RGD modification, experimental PHBV/PCL patches displayed fewer lysed red blood cells and resulted in milder platelet aggregation than KemPeriplas-Neo patches. Xenopericardial patches failed to form an endothelial layer in vivo and were prone to calcification. By contrast, TTDDA/RGDK-modified biodegradable patches demonstrated a resistance to calcification. Modification by TTDDA/RGDK and TTDDA/c[RGDFK] facilitated the formation of neovasculature upon the implantation in vivo.
RESUMO
The modulation of phagocyte responses is essential for successful performance of biomaterials in order to prevent negative outcomes associated with inflammation. Herein, we developed electrospun poly(ε-caprolactone) (PCL) scaffolds doped with the novel potent c-Jun N-terminal kinase (JNK) inhibitors 11H-indeno[1,2-b]quinoxalin-11-one oxime (IQ-1) and 11H-indeno[1,2-b]quinoxalin-11-one O-(O-ethylcarboxymethyl) oxime(IQ-1E) as a promising approach for modulating phagocyte activation. Optimized electrospinning parameters allowed us to produce microfiber composite materials with suitable mechanical properties. We found that embedded compounds were bound to the polymer matrix via hydrophobic interactions and released in two steps, with release mostly controlled by Fickian diffusion. The fabricated scaffolds doped with active compounds IQ-1 and IQ-1E effectively inhibited phagocyte inflammatory responses. For example, they suppressed human neutrophil activation by the biomaterials, as indicated by decreased neutrophil reactive oxygen species (ROS) production and Ca2+ mobilization. In addition, they inhibited lipopolysaccharide (LPS)-induced NF-κB/AP-1 reporter activity in THP-1Blue cells and interleukin (IL)-6 production in MonoMac-6 cells without affecting cell viability. These effects were attributed to the released compounds rather than cell-surface interactions. Therefore, our study demonstrates that doping tissue engineering scaffolds with novel JNK inhibitors represents a powerful tool for preventing adverse immune responses to biomaterials as well as serves as a platform for drug delivery.