Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36769972

RESUMO

This paper introduces the results of hydrolytic stability tests and radiation resistance tests of phosphate molybdates and phosphate tungstates Na1-xZr2(PO4)3-x(XO4)x, X = Mo, W (0 ≤ x ≤ 0.5). The ceramics characterized by relatively high density (more than 97.5%) were produced by spark plasma sintering (SPS) of submicron powders obtained by sol-gel synthesis. The study focused on hydrolytic resistance of the ceramics in static mode at room temperature. After 28 days of testing in distilled water, the normalized leaching rate was determined. It was found that the ceramics demonstrated high hydrolytic resistance in static mode: the normalized leaching rates for Mo- and W-containing ceramics were 31·10-6 and 3.36·10-6 g·cm-2·day-1, respectively. The ceramics demonstrated high resistance to irradiation with 167 MeV Xe+26 multiple-charged ions at fluences ranging from 1·1012 to 6·1013 cm-2. The Mo-containing Na0.5Zr2(PO4)2.5(XO4)0.5 ceramics were shown to have higher radiation resistance than phosphate tungstates. Radiation was shown to trigger an increase in leaching rates for W and Mo in the crystal structure of NZP ceramics.

2.
Materials (Basel) ; 16(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36769994

RESUMO

Submicron-grade powders of Na1-xZr2(PO4)3-x(XO4)x compounds (hereafter referred to as NZP) and Ca1-xZr2(PO4)3-x(XO4)x compounds (hereafter, CZP), X = Mo, W (0 ≤ x ≤ 0.5) were obtained by sol-gel synthesis. The compounds obtained were studied by X-ray diffraction phase analysis and electron microscopy. An increase in the W or Mo contents was shown to result in an increase in the unit cell volume of the NZP and CZP crystal lattices and in a decrease in the coherent scattering region sizes. Thermal expansion behavior at high temperatures of synthesized NZP and CZP compounds has been investigated. The dependencies of the parameters a and c on the heating temperature, as well as the temperature dependence of the crystal lattice unit cell volume V in the range from the room temperature up to 800 °C, were obtained. The dependencies of the average thermal expansion coefficient (αav) and of the volume coefficient (ß) on the W and Mo contents in the compositions of NZP and CZP compounds were studied. Ceramics Na1-xZr2(PO4)3-x(XO4)x with relatively high density (more than 97.5%) were produced by spark plasma sintering (SPS). The increase in the W or Mo contents in the ceramics leads to an increase in the relative density of NZP and to a decrease of the optimum sintering temperature. The mean grain size in the NZP ceramics decreases with increasing W or Mo contents. The study of strength characteristics has revealed that the hardness of the NZP ceramics is greater than 5 GPa, and that the minimum fracture toughness factor was 1 MPa·m1/2.

3.
RSC Adv ; 9(29): 16746-16753, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35516405

RESUMO

A bulk nanostructured material based on oxidized silicon nanopowder was fabricated using a spark plasma sintering technique. Structural investigations revealed that this material has the composition of ∼14 nm core Si granules inside an SiO2 shell. Photoluminescence measurements have shown that the emission spectra lie in the energy range of 0.6-1.1 eV, which is not typical of the emissions of the Si/SiO2 nanostructures reported in numerous papers. This result can be explained by the formation of energy states in the bandgap and the participation of these states in both electronic transport and photoluminescence emission. Annealing of the sample leads to a decrease in defect density, which in turn leads to quenching of the 0.6-1.1 eV photoluminescence. In this case ∼1.13 eV inter-band transitions in the Si core start to play a dominant role in radiative recombination. Thus, the possibility of controlling the photoluminescence emission over a broad wavelength range was demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA