Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 15: 1331231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694940

RESUMO

A subset of neuroendocrine tumors (NETs) can cause an excessive secretion of hormones, neuropeptides, and biogenic amines into the bloodstream. These so-called functional NETs evoke a hormone-related disease and lead to several different syndromes, depending on the factors released. One of the most common functional syndromes, carcinoid syndrome, is characterized mainly by over-secretion of serotonin. However, what distinguishes functional from non-functional tumors on a molecular level remains unknown. Here, we demonstrate that the expression of sortilin, a widely expressed transmembrane receptor involved in intracellular protein sorting, is significantly increased in functional compared to non-functional NETs and thus can be used as a biomarker for functional NETs. Furthermore, using a cell line model of functional NETs, as well as organoids, we demonstrate that inhibition of sortilin reduces cellular serotonin concentrations and may therefore serve as a novel therapeutic target to treat patients with carcinoid syndrome.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Tumores Neuroendócrinos , Serotonina , Feminino , Humanos , Masculino , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Síndrome do Carcinoide Maligno/metabolismo , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/patologia , Serotonina/metabolismo , Pessoa de Meia-Idade , Animais , Camundongos
3.
Hippocampus ; 32(4): 310-331, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35171512

RESUMO

Information processing in cortical circuits, including the hippocampus, relies on the dynamic control of neuronal activity by GABAergic interneurons (INs). INs form a heterogenous population with defined types displaying distinct morphological, molecular, and physiological characteristics. In the major input region of the hippocampus, the dentate gyrus (DG), a number of IN types have been described which provide synaptic inhibition to distinct compartments of excitatory principal cells (PrCs) and other INs. In this study, we perform an unbiased classification of GABAergic INs in the DG by combining in vitro whole-cell patch-clamp recordings, intracellular labeling, morphological analysis, and unsupervised cluster analysis to better define IN type diversity in this region. This analysis reveals that DG INs divide into at least 13 distinct morpho-physiological types which reflect the complexity of the local IN network and serve as a basis for further network analyses.


Assuntos
Giro Denteado , Interneurônios , Animais , Giro Denteado/fisiologia , Hipocampo , Interneurônios/fisiologia , Neurônios , Técnicas de Patch-Clamp , Ratos
4.
Brain Struct Funct ; 225(8): 2577-2589, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32918613

RESUMO

The morphological structure of neurons provides the basis for their functions and is a major focus of contemporary neuroscience studies. Intracellular staining of single cells in acute slices is a well-established approach, offering high-resolution information on neuronal morphology, complementing their physiology. Despite major technical advances, however, a common histological artifact often precludes precise morphological analysis: shrinkage of the sampled tissue after embedding for microscopy. Here, we describe a new approach using a metal spacer, sandwiched between two coverslips to reduce shrinkage of whole-mount slice preparations during embedding with aqueous mounting medium under a coverslip. This approach additionally allows imaging the slices from both sides to obtain better quality images of deeper structures. We demonstrate that the use of this spacer system can efficiently and stably reduce the shrinkage of slices, whereas conventional embedding methods without spacer or with agar spacer cause severe, progressive shrinkage after embedding. We further show that the shrinkage of slices is not uniform and artifacts in morphology and anatomical parameters produced cannot be compensated using linear correction algorithms. Our study, thus, emphasizes the importance of preventing the deformation of slice preparations and offers an effective means for reducing shrinkage and associated artifacts during embedding.


Assuntos
Encéfalo/anatomia & histologia , Neurônios/citologia , Manejo de Espécimes/métodos , Inclusão do Tecido/métodos , Animais , Encéfalo/citologia , Feminino , Masculino , Ratos , Ratos Wistar
5.
Science ; 367(6473): 83-87, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31896716

RESUMO

The active electrical properties of dendrites shape neuronal input and output and are fundamental to brain function. However, our knowledge of active dendrites has been almost entirely acquired from studies of rodents. In this work, we investigated the dendrites of layer 2 and 3 (L2/3) pyramidal neurons of the human cerebral cortex ex vivo. In these neurons, we discovered a class of calcium-mediated dendritic action potentials (dCaAPs) whose waveform and effects on neuronal output have not been previously described. In contrast to typical all-or-none action potentials, dCaAPs were graded; their amplitudes were maximal for threshold-level stimuli but dampened for stronger stimuli. These dCaAPs enabled the dendrites of individual human neocortical pyramidal neurons to classify linearly nonseparable inputs-a computation conventionally thought to require multilayered networks.


Assuntos
Potenciais de Ação , Dendritos/fisiologia , Neocórtex/fisiologia , Células Piramidais/fisiologia , Adolescente , Adulto , Idoso , Cálcio/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neocórtex/citologia , Adulto Jovem
6.
Front Neuroanat ; 11: 56, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28751858

RESUMO

Synaptosomal-associated protein of 47 kDa (SNAP47) isoform is an atypical member of the SNAP family, which does not contribute directly to exocytosis and synaptic vesicle (SV) recycling. Initial characterization of SNAP47 revealed a widespread expression in nervous tissue, but little is known about its cellular and subcellular localization in hippocampal neurons. Therefore, in the present study we applied multiple-immunofluorescence labeling, immuno-electron microscopy and in situ hybridization (ISH) and analyzed the localization of SNAP47 in pre- and postsynaptic compartments of glutamatergic and GABAergic neurons in the mouse and rat hippocampus. While the immunofluorescence signal for SNAP47 showed a widespread distribution in both mouse and rat, the labeling pattern was complementary in the two species: in the mouse the immunolabeling was higher over the CA3 stratum radiatum, oriens and cell body layer. In contrast, in the rat the labeling was stronger over the CA1 neuropil and in the CA3 stratum lucidum. Furthermore, in the mouse high somatic labeling for SNAP47 was observed in GABAergic interneurons (INs). On the contrary, in the rat, while most INs were positive, they blended in with the high neuropil labeling. ISH confirmed the high expression of SNAP47 RNA in INs in the mouse. Co-staining for SNAP47 and pre- and postsynaptic markers in the rat revealed a strong co-localization postsynaptically with PSD95 in dendritic spines of pyramidal cells and, to a lesser extent, presynaptically, with ZnT3 and vesicular glutamate transporter 1 (VGLUT1) in glutamatergic terminals such as mossy fiber (MF) boutons. Ultrastructural analysis confirmed the pre- and postsynaptic localization at glutamatergic synapses. Furthermore, in the mouse hippocampus SNAP47 was found to be localized at low levels to dendritic shafts and axon terminals of putative INs forming symmetric synapses, indicating that this protein could be trafficked to both post- and presynaptic sites in both major cell types. These results reveal divergent localization of SNAP47 protein in mouse and rat hippocampus indicating species- and cell type-specific differences. SNAP47 is likely to be involved in unique fusion machinery which is distinct from the one involved in presynaptic neurotransmitter release. Nonetheless, our data suggest that SNAP47 may be involved not only postsynaptic, but also in presynaptic function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA