Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(8): e0287798, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37607184

RESUMO

BACKGROUND: Wheat grain protein, zinc (Zn), and iron (Fe) content are important wheat qualities crucial for human nutrition and health worldwide. Increasing these three components simultaneously in wheat grains by a single gene came into the picture through NAM-B1 cloning. NAM-B1 gene and its association with the mentioned grain quality traits have been primarily studied in common and durum wheat and their progenitors T. dicoccum and T. dicoccoides. METHOD: In the present study, for the first time, 38 wheat accessions comprising ten hexaploids from five species and 28 tetraploids from nine species were evaluated in the field for two consecutive years. Additionally, the 582 first nucleotides of the NAM-B1 gene were examined. RESULT: The NAM-B1 gene was present in 21 tetraploids and five hexaploid accessions. Seven tetraploid accessions contained the wild-type allele (five T. dicoccum, one T. dicoccoides, and one T. ispahanicum) and fourteen the mutated allele with a 'T' insertion at position 11 in the open reading frame, causing a frameshift. In hexaploid wheat comprising the gene, only one accession of T. spelta contained the wild-type allele, and the rest resembled the insertion mutated type. In the two-year field experiment, eight accessions with the wild-type NAM-B1 allele had significantly higher protein, Zn and Fe grain content when compared to indel-type accessions. Additionally, these accessions exhibited a lower mean for seed-filling duration than all other accessions containing indel-type alleles. In terms of grain yield, 1,000-kernel weight, kernel diameter, and kernel length, T. dicoccum accessions having wild-type alleles were similar to the indel-type accessions over two years of evaluation. CONCLUSION: These findings further support the possibility of simultaneous improvement of wheat grain protein, Zn, and Fe content by a single gene crucial for human nutrition and health worldwide.


Assuntos
Proteínas de Grãos , Triticum , Humanos , Triticum/genética , Tetraploidia , Alelos , Grão Comestível/genética
2.
BMC Plant Biol ; 23(1): 323, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328739

RESUMO

BACKGROUND: During domestication and subsequent improvement plants were subjected to intensive positive selection for desirable traits. Identification of selection targets is important with respect to the future targeted broadening of diversity in breeding programmes. Rye (Secale cereale L.) is a cereal that is closely related to wheat, and it is an important crop in Central, Eastern and Northern Europe. The aim of the study was (i) to identify diverse groups of rye accessions based on high-density, genome-wide analysis of genetic diversity within a set of 478 rye accessions, covering a full spectrum of diversity within the genus, from wild accessions to inbred lines used in hybrid breeding, and (ii) to identify selective sweeps in the established groups of cultivated rye germplasm and putative candidate genes targeted by selection. RESULTS: Population structure and genetic diversity analyses based on high-quality SNP (DArTseq) markers revealed the presence of three complexes in the Secale genus: S. sylvestre, S. strictum and S. cereale/vavilovii, a relatively narrow diversity of S. sylvestre, very high diversity of S. strictum, and signatures of strong positive selection in S. vavilovii. Within cultivated ryes we detected the presence of genetic clusters and the influence of improvement status on the clustering. Rye landraces represent a reservoir of variation for breeding, and especially a distinct group of landraces from Turkey should be of special interest as a source of untapped variation. Selective sweep detection in cultivated accessions identified 133 outlier positions within 13 sweep regions and 170 putative candidate genes related, among others, to response to various environmental stimuli (such as pathogens, drought, cold), plant fertility and reproduction (pollen sperm cell differentiation, pollen maturation, pollen tube growth), and plant growth and biomass production. CONCLUSIONS: Our study provides valuable information for efficient management of rye germplasm collections, which can help to ensure proper safeguarding of their genetic potential and provides numerous novel candidate genes targeted by selection in cultivated rye for further functional characterisation and allelic diversity studies.


Assuntos
Melhoramento Vegetal , Secale , Secale/genética , Sementes , Fenótipo , Citoplasma
3.
Nat Genet ; 53(4): 564-573, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33737754

RESUMO

Rye (Secale cereale L.) is an exceptionally climate-resilient cereal crop, used extensively to produce improved wheat varieties via introgressive hybridization and possessing the entire repertoire of genes necessary to enable hybrid breeding. Rye is allogamous and only recently domesticated, thus giving cultivated ryes access to a diverse and exploitable wild gene pool. To further enhance the agronomic potential of rye, we produced a chromosome-scale annotated assembly of the 7.9-gigabase rye genome and extensively validated its quality by using a suite of molecular genetic resources. We demonstrate applications of this resource with a broad range of investigations. We present findings on cultivated rye's incomplete genetic isolation from wild relatives, mechanisms of genome structural evolution, pathogen resistance, low-temperature tolerance, fertility control systems for hybrid breeding and the yield benefits of rye-wheat introgressions.


Assuntos
Mapeamento Cromossômico/métodos , Genoma de Planta , Melhoramento Vegetal/métodos , Proteínas de Plantas/genética , Secale/genética , Triticum/genética , Adaptação Fisiológica/genética , Produtos Agrícolas/genética , Produtos Agrícolas/imunologia , Regulação da Expressão Gênica de Plantas , Introgressão Genética , Cariótipo , Imunidade Vegetal/genética , Proteínas de Plantas/metabolismo , Secale/imunologia , Estresse Fisiológico
4.
BMC Genomics ; 21(1): 845, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33256606

RESUMO

BACKGROUND: Loss of genetic variation negatively impacts breeding efforts and food security. Genebanks house over 7 million accessions representing vast allelic diversity that is a resource for sustainable breeding. Discovery of DNA variations is an important step in the efficient use of these resources. While technologies have improved and costs dropped, it remains impractical to consider resequencing millions of accessions. Candidate genes are known for most agronomic traits, providing a list of high priority targets. Heterogeneity in seed stocks means that multiple samples from an accession need to be evaluated to recover available alleles. To address this we developed a pooled amplicon sequencing approach and applied it to the out-crossing cereal rye (Secale cereale L.). RESULTS: Using the amplicon sequencing approach 95 rye accessions of different improvement status and worldwide origin, each represented by a pooled sample comprising DNA of 96 individual plants, were evaluated for sequence variation in six candidate genes with significant functions on biotic and abiotic stress resistance, and seed quality. Seventy-four predicted deleterious variants were identified using multiple algorithms. Rare variants were recovered including those found only in a low percentage of seed. CONCLUSIONS: We conclude that this approach provides a rapid and flexible method for evaluating stock heterogeneity, probing allele diversity, and recovering previously hidden variation. A large extent of within-population heterogeneity revealed in the study provides an important point for consideration during rye germplasm conservation and utilization efforts.


Assuntos
Melhoramento Vegetal , Secale , Alelos , Variação Genética , Fenótipo , Secale/genética , Sementes
5.
Sci Rep ; 8(1): 8428, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29849048

RESUMO

Identification of bacterial artificial chromosome (BAC) clones containing specific sequences is a prerequisite for many applications, such as physical map anchoring or gene cloning. Existing BAC library screening strategies are either low-throughput or require a considerable initial input of resources for platform establishment. We describe a high-throughput, reliable, and cost-effective BAC library screening approach deploying genotyping platforms which are independent from the availability of sequence information: a genotyping-by-sequencing (GBS) method DArTSeq and the microarray-based Diversity Arrays Technology (DArT). The performance of these methods was tested in a very large and complex rye genome. The DArTseq approach delivered superior results: a several fold higher efficiency of addressing genetic markers to BAC clones and anchoring of BAC clones to genetic map and also a higher reliability. Considering the sequence independence of the platform, the DArTseq-based library screening can be proposed as an attractive method to speed up genomics research in resource poor species.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Técnicas de Genotipagem/métodos , Secale/genética , Análise de Sequência , Cromossomos de Plantas/genética , Clonagem Molecular , Genoma de Planta/genética
6.
Front Plant Sci ; 7: 1600, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27833625

RESUMO

Large genome size and complexity hamper considerably the genomics research in relevant species. Rye (Secale cereale L.) has one of the largest genomes among cereal crops and repetitive sequences account for over 90% of its length. Diversity Arrays Technology is a high-throughput genotyping method, in which a preferential sampling of gene-rich regions is achieved through the use of methylation sensitive restriction enzymes. We obtained sequences of 6,177 rye DArT markers and following a redundancy analysis assembled them into 3,737 non-redundant sequences, which were then used in homology searches against five Pooideae sequence sets. In total 515 DArT sequences could be incorporated into publicly available rye genome zippers providing a starting point for the integration of DArT- and transcript-based genomics resources in rye. Using Blast2Go pipeline we attributed putative gene functions to 1101 (29.4%) of the non-redundant DArT marker sequences, including 132 sequences with putative disease resistance-related functions, which were found to be preferentially located in the 4RL and 6RL chromosomes. Comparative analysis based on the DArT sequences revealed obvious inconsistencies between two recently published high density consensus maps of rye. Furthermore we demonstrated that DArT marker sequences can be a source of SSR polymorphisms. Obtained data demonstrate that DArT markers effectively target gene space in the large, complex, and repetitive rye genome. Through the annotation of putative gene functions and the alignment of DArT sequences relative to reference genomes we obtained information, that will complement the results of the studies, where DArT genotyping was deployed, by simplifying the gene ontology and microcolinearity based identification of candidate genes.

8.
J Appl Genet ; 56(3): 287-98, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25666974

RESUMO

Benzoxazinoids (BX) are major secondary metabolites of gramineous plants that play an important role in disease resistance and allelopathy. They also have many other unique properties including anti-bacterial and anti-fungal activity, and the ability to reduce alfa-amylase activity. The biosynthesis and modification of BX are controlled by the genes Bx1 ÷ Bx10, GT and glu, and the majority of these Bx genes have been mapped in maize, wheat and rye. However, the genetic basis of BX biosynthesis remains largely uncharacterized apart from some data from maize and wheat. The aim of this study was to isolate, sequence and characterize five genes (ScBx1, ScBx2, ScBx3, ScBx4 and ScBx5) encoding enzymes involved in the synthesis of DIBOA, an important defense compound of rye. Using a modified 3D procedure of BAC library screening, seven BAC clones containing all of the ScBx genes were isolated and sequenced. Bioinformatic analyses of the resulting contigs were used to examine the structure and other features of these genes, including their promoters, introns and 3'UTRs. Comparative analysis showed that the ScBx genes are similar to those of other Poaceae species, especially to the TaBx genes. The polymorphisms present both in the coding sequences and non-coding regions of ScBx in relation to other Bx genes are predicted to have an impact on the expression, structure and properties of the encoded proteins.


Assuntos
Genes de Plantas , Ácidos Hidroxâmicos/química , Secale/genética , Vias Biossintéticas/genética , Biologia Computacional , DNA de Plantas/genética , Éxons , Biblioteca Gênica , Íntrons , Regiões Promotoras Genéticas , Secale/química , Análise de Sequência de DNA
9.
BMC Plant Biol ; 14: 184, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25085433

RESUMO

BACKGROUND: Numerous rye accessions are stored in ex situ genebanks worldwide. Little is known about the extent of genetic diversity contained in any of them and its relation to contemporary varieties, since to date rye genetic diversity studies had a very limited scope, analyzing few loci and/ or few accessions. Development of high throughput genotyping methods for rye opened the possibility for genome wide characterizations of large accessions sets. In this study we used 1054 Diversity Array Technology (DArT) markers with defined chromosomal location to characterize genetic diversity and population structure in a collection of 379 rye accessions including wild species, landraces, cultivated materials, historical and contemporary rye varieties. RESULTS: Average genetic similarity (GS) coefficients and average polymorphic information content (PIC) values varied among chromosomes. Comparison of chromosome specific average GS within and between germplasm sub-groups indicated regions of chromosomes 1R and 4R as being targeted by selection in current breeding programs. Bayesian clustering, principal coordinate analysis and Neighbor Joining clustering demonstrated that source and improvement status contributed significantly to the structure observed in the analyzed set of Secale germplasm. We revealed a relatively limited diversity in improved rye accessions, both historical and contemporary, as well as lack of correlation between clustering of improved accessions and geographic origin, suggesting common genetic background of rye accessions from diverse geographic regions and extensive germplasm exchange. Moreover, contemporary varieties were distinct from the remaining accessions. CONCLUSIONS: Our results point to an influence of reproduction methods on the observed diversity patterns and indicate potential of ex situ collections for broadening the genetic diversity in rye breeding programs. Obtained data show that DArT markers provide a realistic picture of the genetic diversity and population structure present in the collection of 379 rye accessions and are an effective platform for rye germplasm characterization and association mapping studies.


Assuntos
Variação Genética , Secale/genética , Teorema de Bayes , Cruzamento , Mapeamento Cromossômico , Cromossomos de Plantas , Análise por Conglomerados , DNA de Plantas/genética , Marcadores Genéticos , Genética Populacional , Técnicas de Genotipagem , Análise de Componente Principal , Secale/classificação
10.
Plant Cell Rep ; 32(1): 1-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23007688

RESUMO

Rye is one of the most important crops in Eastern and Northern Europe. Despite the numerous beneficial features of rye, its annual production decreases successively which correlates with the lack of progress in its breeding compared with other cereals. Biotechnological methods could effectively improve the breeding of rye. However, their application is highly limited by the absence of an efficient procedure for plant regeneration in vitro, since rye is one of the most recalcitrant cereals with regard to the tissue culture response (TCR), and successful regeneration is highly dependent on genotype. Efforts to understand the genetic mechanisms controlling TCR of rye have elucidated some basic aspects, and several genes and genome regions controlling this trait have been identified. The aim of this review is to summarize the limited current knowledge of this topic.


Assuntos
Secale/genética , Técnicas de Cultura de Tecidos/métodos , Cromossomos de Plantas/genética , Locos de Características Quantitativas/genética , Especificidade da Espécie
11.
Mol Breed ; 30(1): 367-376, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22707913

RESUMO

The objectives of the research were to determine the position of quantitative trait loci (QTL) for α-amylase activity on the genetic map of a rye recombinant inbred line population-S120 × S76-and to compare them to known QTL for preharvest sprouting and heading earliness. Fourteen QTL for α-amylase activity on all seven chromosomes were identified. The detected QTL were responsible for 6.09-23.32% of α-amylase activity variation. The lowest LOD value (2.22) was achieved by locus QAa4R-M3 and the highest (7.79) by locus QAa7R-M1. Some QTL intervals for features of interest overlapped partially or completely. There were six overlapping QTL for α-amylase activity and preharvest sprouting (on 1R, 3R, 4R, 6R, 7R) and the same number for preharvest sprouting and heading earliness (on 1R, 2R, 6R, 7R). Furthermore, there was one interval partially common to all three traits, mapped on the long arm of chromosome 1R. Testing of lines originating from hybrid breeding programs, such as S120 and S76, may provide important information about the most significant genes and markers for selection in commercial breeding. Among the statistically significant markers selected in the Kruskal-Wallis test (P < 0.005), there were 55 common ones for preharvest sprouting and heading earliness (1R, 2R, 6R), 30 markers coinciding between α-amylase activity and preharvest sprouting (5R, 7R) and one marker for α-amylase activity and heading earliness (6R). ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11032-011-9627-1) contains supplementary material, which is available to authorized users.

12.
PLoS One ; 6(12): e28495, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163026

RESUMO

BACKGROUND: Rye (Secale cereale L.) is an economically important crop, exhibiting unique features such as outstanding resistance to biotic and abiotic stresses and high nutrient use efficiency. This species presents a challenge to geneticists and breeders due to its large genome containing a high proportion of repetitive sequences, self incompatibility, severe inbreeding depression and tissue culture recalcitrance. The genomic resources currently available for rye are underdeveloped in comparison with other crops of similar economic importance. The aim of this study was to create a highly saturated, multilocus linkage map of rye via consensus mapping, based on Diversity Arrays Technology (DArT) markers. METHODOLOGY/PRINCIPAL FINDINGS: Recombinant inbred lines (RILs) from 5 populations (564 in total) were genotyped using DArT markers and subjected to linkage analysis using Join Map 4.0 and Multipoint Consensus 2.2 software. A consensus map was constructed using a total of 9703 segregating markers. The average chromosome map length ranged from 199.9 cM (2R) to 251.4 cM (4R) and the average map density was 1.1 cM. The integrated map comprised 4048 loci with the number of markers per chromosome ranging from 454 for 7R to 805 for 4R. In comparison with previously published studies on rye, this represents an eight-fold increase in the number of loci placed on a consensus map and a more than two-fold increase in the number of genetically mapped DArT markers. CONCLUSIONS/SIGNIFICANCE: Through the careful choice of marker type, mapping populations and the use of software packages implementing powerful algorithms for map order optimization, we produced a valuable resource for rye and triticale genomics and breeding, which provides an excellent starting point for more in-depth studies on rye genome organization.


Assuntos
Genes de Plantas , Marcadores Genéticos/genética , Secale/genética , Algoritmos , Mapeamento Cromossômico/métodos , Cromossomos de Plantas , Cruzamentos Genéticos , Ligação Genética , Genoma de Planta , Genótipo , Modelos Genéticos , Reação em Cadeia da Polimerase/métodos , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único
13.
J Appl Genet ; 52(3): 313-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21559995

RESUMO

The Rfc1 gene controls restoration of male fertility in rye (Secale cereale L.) with sterility-inducing cytoplasm CMS-C. Two populations of recombinant inbred lines (RIL) were used in this study to identify DArT markers located on the 4RL chromosome, in the close vicinity of the Rfc1 gene. In the population developed from the 541×2020LM intercross, numerous markers tightly linked with the restorer gene were identified. This group contained 91 DArT markers and three SCARs additionally analyzed in the study. All these markers were mapped in the distance not exceeding 6 cM from the gene of interest. In the second mapping population (541×Ot1-3 intercross), only 9 DArT markers located closely to the Rfc1 gene were identified. Five of these DArT markers were polymorphic in both populations.


Assuntos
Ligação Genética , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Secale/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Citoplasma/genética , Fertilidade , Genes de Plantas , Marcadores Genéticos , Infertilidade
14.
BMC Genomics ; 10: 578, 2009 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-19958552

RESUMO

BACKGROUND: Implementation of molecular breeding in rye (Secale cereale L.) improvement programs depends on the availability of high-density molecular linkage maps. However, the number of sequence-specific PCR-based markers available for the species is limited. Diversity Arrays Technology (DArT) is a microarray-based method allowing for detection of DNA polymorphism at several thousand loci in a single assay without relying on DNA sequence information. The objective of this study was the development and application of Diversity Arrays technology for rye. RESULTS: Using the PstI/TaqI method of complexity reduction we created a rye diversity panel from DNA of 16 rye varieties and 15 rye inbred lines, including parents of a mapping population consisting of 82 recombinant inbred lines. The usefulness of a wheat diversity panel for identification of DArT markers for rye was also demonstrated. We identified 1022 clones that were polymorphic in the genotyped ILs and varieties and 1965 clones that differentiated the parental lines L318 and L9 and segregated in the mapping population. Hierarchical clustering and ordination analysis were performed based on the 1022 DArT markers to reveal genetic relationships between the rye varieties and inbred lines included in the study. Chromosomal location of 1872 DArT markers was determined using wheat-rye addition lines and 1818 DArT markers (among them 1181 unique, non-cosegregating) were placed on a genetic linkage map of the cross L318 x L9, providing an average density of one unique marker every 2.68 cM. This is the most saturated rye linkage map based solely on transferable markers available at the moment, providing rye breeders and researches with a better choice of markers and a higher probability of finding polymorphic markers in the region of interest. CONCLUSION: The Diversity Arrays Technology can be efficiently and effectively used for rye genome analyses - assessment of genetic similarity and linkage mapping. The 11520-clone rye genotyping panel with several thousand markers with determined chromosomal location and accessible through an inexpensive genotyping service is a valuable resource for studies on rye genome organization and in molecular breeding of the species.


Assuntos
Mapeamento Cromossômico/métodos , Variação Genética , Genoma de Planta/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Secale/genética , Cruzamento , Cromossomos de Plantas/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Marcadores Genéticos , Taq Polimerase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA