Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurol Sci ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023709

RESUMO

Despite research has massively focused on how emotions conveyed by faces are perceived, the perception of emotions' authenticity is a topic that has been surprisingly overlooked. Here, we present the Emotion Authenticity Recognition (EAR) test, a test specifically developed using dynamic stimuli depicting authentic and posed emotions to evaluate the ability of individuals to correctly identify an emotion (emotion recognition index, ER Index) and classify its authenticity (authenticity recognition index (EA Index). The EAR test has been validated on 522 healthy participants and normative values are provided. Correlations with demographic characteristics, empathy and general cognitive status have been obtained revealing that both indices are negatively correlated with age, and positively with education, cognitive status and different facets of empathy. The EAR test offers a new ecological test to assess the ability to detect emotion authenticity that allow to explore the eventual social cognitive deficit even in patients otherwise cognitively intact.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39044677

RESUMO

OBJECTIVE: The Clock Drawing Test (CDT) is a widely used test for cognitive screening as its execution taps into a large number of cognitive functions. Because of the involvement of visuospatial abilities, the CDT is also commonly used to assess hemispatial neglect. In the present study, we introduce a new quantitative scoring method for the CDT that aims to measure the use of space for each half of the clock face and asymmetries of space use. METHOD: Two measures are introduced: the explored space (ES) and used space (US) for each half of the clock, as well as two derived asymmetry indices. Such new measures were applied to CDTs of four groups of participants: right brain-damaged patients without visuospatial neglect, two groups of right brain-damaged patients with varying degrees of visuospatial neglect, and a group of neurologically healthy participants. RESULTS: Analyses showed that only neglect patients explored and used the left clock half significantly less than the right one. This result was also confirmed by the asymmetry indices, where neglect patients showed a stronger rightward bias. For neglect patients, the US asymmetry index correlated with the patients' scores on the neuropsychological tests. The analyses of receiver operating characteristic curves showed that left US and left ES scores had good accuracy in categorizing neglect patients. CONCLUSIONS: The present work provides new quantitative indices of CDT space usage in hemispatial neglect. Cutoffs are provided for clinical practice.

4.
J Neuroeng Rehabil ; 21(1): 44, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566189

RESUMO

BACKGROUND: Tracking gait and balance impairment in time is paramount in the care of older neurological patients. The Minimal Detectable Change (MDC), built upon the Standard Error of the Measurement (SEM), is the smallest modification of a measure exceeding the measurement error. Here, a novel method based on linear mixed-effects models (LMMs) is applied to estimate the standard error of the measurement from data collected before and after rehabilitation and calculate the MDC of gait and balance measures. METHODS: One hundred nine older adults with a gait impairment due to neurological disease (66 stroke patients) completed two assessment sessions before and after inpatient rehabilitation. In each session, two trials of the 10-meter walking test and the Timed Up and Go (TUG) test, instrumented with inertial sensors, have been collected. The 95% MDC was calculated for the gait speed, TUG test duration (TTD) and other measures from the TUG test, including the angular velocity peak (ωpeak) in the TUG test's turning phase. Random intercepts and slopes LMMs with sessions as fixed effects were used to estimate SEM. LMMs assumptions (residuals normality and homoscedasticity) were checked, and the predictor variable ln-transformed if needed. RESULTS: The MDC of gait speed was 0.13 m/s. The TTD MDC, ln-transformed and then expressed as a percentage of the baseline value to meet LMMs' assumptions, was 15%, i.e. TTD should be < 85% of the baseline value to conclude the patient's improvement. ωpeak MDC, also ln-transformed and expressed as the baseline percentage change, was 25%. CONCLUSIONS: LMMs allowed calculating the MDC of gait and balance measures even if the test-retest steady-state assumption did not hold. The MDC of gait speed, TTD and ωpeak from the TUG test with an inertial sensor have been provided. These indices allow monitoring of the gait and balance impairment, which is central for patients with an increased falling risk, such as neurological old persons. TRIAL REGISTRATION: NA.


Assuntos
Doenças do Sistema Nervoso , Acidente Vascular Cerebral , Humanos , Idoso , Caminhada , Marcha , Velocidade de Caminhada , Acidente Vascular Cerebral/complicações , Reprodutibilidade dos Testes , Equilíbrio Postural
5.
Clin Neurophysiol ; 163: 280-291, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38679530

RESUMO

A significant amount of European basic and clinical neuroscience research includes the use of transcranial magnetic stimulation (TMS) and low intensity transcranial electrical stimulation (tES), mainly transcranial direct current stimulation (tDCS). Two recent changes in the EU regulations, the introduction of the Medical Device Regulation (MDR) (2017/745) and the Annex XVI have caused significant problems and confusions in the brain stimulation field. The negative consequences of the MDR for non-invasive brain stimulation (NIBS) have been largely overlooked and until today, have not been consequently addressed by National Competent Authorities, local ethical committees, politicians and by the scientific communities. In addition, a rushed bureaucratic decision led to seemingly wrong classification of NIBS products without an intended medical purpose into the same risk group III as invasive stimulators. Overregulation is detrimental for any research and for future developments, therefore researchers, clinicians, industry, patient representatives and an ethicist were invited to contribute to this document with the aim of starting a constructive dialogue and enacting positive changes in the regulatory environment.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Estimulação Magnética Transcraniana , Humanos , Pesquisa Biomédica , Aprovação de Equipamentos/legislação & jurisprudência , Europa (Continente) , União Europeia , Legislação de Dispositivos Médicos , Estimulação Magnética Transcraniana/métodos
6.
Conscious Cogn ; 120: 103672, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38452630

RESUMO

The sense of agency is the ability to recognize that we are the actors of our actions and their consequences. We explored whether and how spatial cues may modulate the agency experience by manipulating the ecological validity of the experimental setup (real-space or computer-based setup) and the distance of the action-outcome (near or far). We tested 58 healthy adults collecting explicit agency judgments and the perceived time interval between movements and outcomes (to quantify the intentional binding phenomenon, an implicit index of agency). Participants show greater implicit agency for voluntary actions when there is a temporal and spatial action-outcome contingency. Conversely, participants reported similar explicit agency for outcomes appearing in the near and far space. Notably, these effects were independent of the ecological validity of the setting. These results suggest that spatial proximity, realistic or illusory, is essential for feeling implicitly responsible for the consequences of our actions.


Assuntos
Desempenho Psicomotor , Percepção do Tempo , Adulto , Humanos , Emoções , Julgamento , Sinais (Psicologia)
7.
Front Neurol ; 15: 1340365, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419713

RESUMO

Introduction: Homonymous visual field defects (HVFDs) following acquired brain lesions affect independent living by hampering several activities of everyday life. Available treatments are intensive and week- or month-long. Transcranial Direct current stimulation (tDCS), a plasticity-modulating non-invasive brain stimulation technique, could be combined with behavioral trainings to boost their efficacy or reduce treatment duration. Some promising attempts have been made pairing occipital tDCS with visual restitution training, however less is knows about which area/network should be best stimulated in association with compensatory approaches, aimed at improving exploratory abilities, such as multisensory trainings. Methods: In a proof-of-principle, sham-controlled, single-blind study, 15 participants with chronic HVFDs underwent four one-shot sessions of active or sham anodal tDCS applied over the ipsilesional occipital cortex, the ipsilesional or contralesional posterior parietal cortex. tDCS was delivered during a compensatory multisensory (audiovisual) training. Before and immediately after each tDCS session, participants carried out a visual detection task, and two visual search tasks (EF and Triangles search tests). Accuracy (ACC) and response times (RTs) were analyzed with generalized mixed models. We investigated differences in baseline performance, clinical-demographic and lesion factors between tDCS responders and non-responders, based on post-tDCS behavioral improvements. Lastly, we conducted exploratory analyses to compare left and right brain-damaged participants. Results: RTs improved after active ipsilesional occipital and parietal tDCS in the visual search tasks, while no changes in ACC were detected. Responders to ipsilesional occipital tDCS (Triangle task) had shorter disease duration and smaller lesions of the parietal cortex and the superior longitudinal fasciculus. On the other end, on the EF test, those participants with larger damage of the temporo-parietal cortex or the fronto-occipital white matter tracts showed a larger benefit from contralesional parietal tDCS. Overall, the visual search RTs improvements were larger in participants with right-sided hemispheric lesions. Conclusion: The present result shows the facilitatory effects of occipital and parietal tDCS combined with compensatory multisensory training on visual field exploration in HVFDs, suggesting a potential for the development of new neuromodulation treatments to improve visual scanning behavior in brain-injured patients.

9.
iScience ; 27(1): 108758, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38230260

RESUMO

The becoming of the human being is a multisensory process that starts in the womb. By integrating spontaneous neuronal activity with inputs from the external world, the developing brain learns to make sense of itself through multiple sensory experiences. Over the past ten years, advances in neuroimaging and electrophysiological techniques have allowed the exploration of the neural correlates of multisensory processing in the newborn and infant brain, thus adding an important piece of information to behavioral evidence of early sensitivity to multisensory events. Here, we review recent behavioral and neuroimaging findings to document the origins and early development of multisensory processing, particularly showing that the human brain appears naturally tuned to multisensory events at birth, which requires multisensory experience to fully mature. We conclude the review by highlighting the potential uses and benefits of multisensory interventions in promoting healthy development by discussing emerging studies in preterm infants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA