Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurology ; 102(12): e209418, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38830138

RESUMO

BACKGROUND AND OBJECTIVES: Plasma ß-amyloid-1-42/1-40 (Aß42/40), phosphorylated-tau (P-tau), glial fibrillary acidic protein (GFAP), and neurofilament light (NfL) have been widely examined in Alzheimer disease (AD), but little is known about their reflection of copathologies, clinical importance, and predictive value in dementia with Lewy bodies (DLB). We aimed to evaluate associations of these biomarkers with CSF amyloid, cognition, and core features in DLB. METHODS: This cross-sectional multicenter cohort study with prospective component included individuals with DLB, AD, and healthy controls (HCs), recruited from 2002 to 2020 with an annual follow-up of up to 5 years, from the European-Dementia With Lewy Bodies consortium. Plasma biomarkers were measured by single-molecule array (Neurology 4-Plex E kit). Amyloid status was determined by CSF Aß42 concentrations, and cognition was assessed by Mini-Mental State Examination (MMSE). Biomarker differences across groups, associations with amyloid status, and clinical core features were assessed by analysis of covariance. Associations with cognitive impairment and decline were assessed by linear regression and linear mixed-effects models. RESULTS: In our cohort consisting of 562 individuals (HC n = 89, DLB n = 342, AD n = 131; 250 women [44.5%], mean [SD] age of 71 [8] years), sex distribution did not differ between groups. Patients with DLB were significantly older, and had less years of education and worse baseline cognition than HC, but not AD. DLB participants stratified for amyloid status differed significantly in plasma Aß42/40 ratio (decreased in amyloid abnormal: ß = -0.008, 95% CI -0.016 to -0.0003, p = 0.01) and P-tau (increased in amyloid abnormal, P-tau181: ß = 0.246, 95% CI 0.011-0.481; P-tau231: ß = 0.227, 95% CI 0.035-0.419, both p < 0.05), but not in GFAP (ß = 0.068, 95% CI -0.018 to 0.153, p = 0.119), and NfL (ß = 0.004, 95% CI -0.087 to 0.096, p = 0.923) concentrations. Higher baseline GFAP, NfL, and P-tau concentrations were associated with lower MMSE scores in DLB, and GFAP and NfL were associated with a faster cognitive decline (GFAP: annual change of -2.11 MMSE points, 95% CI -2.88 to -1.35 MMSE points, p < 0.001; NfL: annual change of -2.13 MMSE points, 95% CI -2.97 to -1.29 MMSE points, p < 0.001). DLB participants with parkinsonism had higher concentrations of NfL (ß = 0.08, 95% CI 0.02-0.14, p = 0.006) than those without. DISCUSSION: Our study suggests a possible utility of plasma Aß42/40, P-tau181, and P-tau231 as a noninvasive biomarkers to assess amyloid copathology in DLB, and plasma GFAP and NfL as monitoring biomarkers for cognitive symptoms in DLB.


Assuntos
Peptídeos beta-Amiloides , Biomarcadores , Proteína Glial Fibrilar Ácida , Doença por Corpos de Lewy , Proteínas de Neurofilamentos , Proteínas tau , Humanos , Feminino , Masculino , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/sangue , Idoso , Doença por Corpos de Lewy/líquido cefalorraquidiano , Doença por Corpos de Lewy/sangue , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Peptídeos beta-Amiloides/sangue , Proteínas de Neurofilamentos/sangue , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Proteína Glial Fibrilar Ácida/líquido cefalorraquidiano , Proteína Glial Fibrilar Ácida/sangue , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/sangue , Estudos Transversais , Fragmentos de Peptídeos/líquido cefalorraquidiano , Fragmentos de Peptídeos/sangue , Pessoa de Meia-Idade , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/sangue , Idoso de 80 Anos ou mais , Estudos de Coortes , Estudos Prospectivos , Cognição/fisiologia , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/sangue
2.
Alzheimers Dement (Amst) ; 16(1): e12549, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371360

RESUMO

INTRODUCTION: We aimed to evaluate informal caregivers' attitudes toward undergoing and future implementation of blood-based biomarkers (BBBM) testing for Alzheimer's disease (AD). METHODS: We explored caregivers' perspectives, by combining an online survey (n = 107) with a subsequent focus group (n = 7). We used descriptive statistics and thematic content analysis to identify common themes in answers to open-ended survey questions and focus group data. RESULTS: Most caregivers (72.0%) favored BBBM for AD diagnosis. Provided with hypothetical scenarios, confidence in a normal result decreased significantly if experienced symptoms were more severe (mild: 78.5% vs. severe: 48.6%). Caregivers' attitudes toward BBBM for screening purposes significantly improved with prospect of treatment (53.3% vs. 92.5%). Concerns toward BBBM testing included treatment unavailability, increased/prolonged distress, and AD-related stigma. Potential benefits were actionability, explanation for symptoms, and opportunities for better care and future treatment. DISCUSSION: Emerging AD treatment and reduction of AD-related stigma could profoundly increase public interest in BBBM testing for AD. Highlights: Most informal caregivers would want blood-based biomarker (BBBM) testing for Alzheimer's disease (AD) diagnosis.Perceived (dis)advantages were related to diagnosing AD early.With severe symptoms, there was less confidence in normal BBBM results.Treatment availability would significantly increase interest in BBBM testing for AD.Informal caregivers showed uncertainty regarding the meaning of the term "AD."

3.
Mol Cell Proteomics ; 22(10): 100629, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37557955

RESUMO

Neurodegenerative dementias are progressive diseases that cause neuronal network breakdown in different brain regions often because of accumulation of misfolded proteins in the brain extracellular matrix, such as amyloids or inside neurons or other cell types of the brain. Several diagnostic protein biomarkers in body fluids are being used and implemented, such as for Alzheimer's disease. However, there is still a lack of biomarkers for co-pathologies and other causes of dementia. Such biofluid-based biomarkers enable precision medicine approaches for diagnosis and treatment, allow to learn more about underlying disease processes, and facilitate the development of patient inclusion and evaluation tools in clinical trials. When designing studies to discover novel biofluid-based biomarkers, choice of technology is an important starting point. But there are so many technologies to choose among. To address this, we here review the technologies that are currently available in research settings and, in some cases, in clinical laboratory practice. This presents a form of lexicon on each technology addressing its use in research and clinics, its strengths and limitations, and a future perspective.


Assuntos
Doença de Alzheimer , Humanos , Encéfalo , Biomarcadores , Neurônios , Medicina de Precisão , Peptídeos beta-Amiloides
4.
Alzheimers Dement (Amst) ; 15(3): e12456, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37502019

RESUMO

INTRODUCTION: Our previous antibody-based cerebrospinal fluid (CSF) proteomics study showed that Thimet oligopeptidase (THOP1), an amyloid beta (Aß) neuropeptidase, was increased in mild cognitive impairment with amyloid pathology (MCI-Aß+) and Alzheimer's disease (AD) dementia compared with controls and dementia with Lewy bodies (DLB), highlighting the potential of CSF THOP1 as an early specific biomarker for AD. We aimed to develop THOP1 immunoassays for large-scale analysis and validate our proteomics findings in two independent cohorts. METHODS: We developed in-house CSF THOP1 immunoassays on automated Ella and Simoa platforms. The performance of the different assays were compared using Passing-Bablok regression analysis in a subset of CSF samples from the discovery cohort (n = 72). Clinical validation was performed in two independent cohorts (cohort 1: n = 200; cohort 2: n = 165) using the Ella platform. RESULTS: THOP1 concentrations moderately correlated between proteomics analysis and our novel assays (Rho > 0.580). In both validation cohorts, CSF THOP1 was increased in MCI-Aß+ (>1.3-fold) and AD (>1.2-fold) compared with controls; and between MCI-Aß+ and DLB (>1.2-fold). Higher THOP1 concentrations were detected in AD compared with DLB only when both cohorts were analyzed together. In both cohorts, THOP1 correlated with CSF total tau (t-tau), phosphorylated tau (p-tau), and Aß40 (Rho > 0.540) but not Aß42. DISCUSSION: Validation of our proteomics findings underpins the potential of CSF THOP1 as an early specific biomarker associated with AD pathology. The use of antibody-based platforms in both the discovery and validation phases facilitated the translation of proteomics findings, providing an additional workflow that may accelerate the development of biofluid-based biomarkers.

5.
J Alzheimers Dis ; 90(1): 363-380, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120776

RESUMO

BACKGROUND: The differential diagnosis of frontotemporal dementia (FTD) is still a challenging task due to its symptomatic overlap with other neurological diseases and the lack of biofluid-based biomarkers. OBJECTIVE: To investigate the diagnostic potential of a combination of novel biomarkers in cerebrospinal fluid (CSF) and blood. METHODS: We included 135 patients from the Center for Memory Disturbances, University of Perugia, with the diagnoses FTD (n = 37), mild cognitive impairment due to Alzheimer's disease (MCI-AD, n = 47), Lewy body dementia (PDD/DLB, n = 22), and cognitively unimpaired patients as controls (OND, n = 29). Biomarker levels of neuronal pentraxin-2 (NPTX2), neuronal pentraxin receptor, neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) were measured in CSF, as well as NfL and GFAP in serum. We assessed biomarker differences by analysis of covariance and generalized linear models (GLM). We performed receiver operating characteristics analyses and Spearman correlation to determine biomarker associations. RESULTS: CSF NPTX2 and serum GFAP levels varied most between diagnostic groups. The combination of CSF NPTX2, serum NfL and serum GFAP differentiated FTD from the other groups with good accuracy (FTD versus MCI-AD: area under the curve (AUC) [95% CI] = 0.89 [0.81-0.96]; FTD versus PDD/DLB: AUC = 0.82 [0.71-0.93]; FTD versus OND: AUC = 0.80 [0.70-0.91]). CSF NPTX2 and serum GFAP correlated positively only in PDD/DLB (ρ= 0.56, p < 0.05). NPTX2 and serum NfL did not correlate in any of the diagnostic groups. Serum GFAP and serum NfL correlated positively in all groups (ρ= 0.47-0.74, p < 0.05). CONCLUSION: We show the combined potential of CSF NPTX2, serum NfL, and serum GFAP to differentiate FTD from other neurodegenerative disorders.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Doença por Corpos de Lewy , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Demência Frontotemporal/diagnóstico , Demência Frontotemporal/líquido cefalorraquidiano , Proteína Glial Fibrilar Ácida , Filamentos Intermediários , Doença por Corpos de Lewy/líquido cefalorraquidiano , Proteínas de Neurofilamentos , Proteínas tau/líquido cefalorraquidiano
6.
Front Neurol ; 13: 890638, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903119

RESUMO

Proteomics studies have shown differential expression of numerous proteins in dementias but have rarely led to novel biomarker tests for clinical use. The Marie Curie MIRIADE project is designed to experimentally evaluate development strategies to accelerate the validation and ultimate implementation of novel biomarkers in clinical practice, using proteomics-based biomarker development for main dementias as experimental case studies. We address several knowledge gaps that have been identified in the field. First, there is the technology-translation gap of different technologies for the discovery (e.g., mass spectrometry) and the large-scale validation (e.g., immunoassays) of biomarkers. In addition, there is a limited understanding of conformational states of biomarker proteins in different matrices, which affect the selection of reagents for assay development. In this review, we aim to understand the decisions taken in the initial steps of biomarker development, which is done via an interim narrative update of the work of each ESR subproject. The results describe the decision process to shortlist biomarkers from a proteomics to develop immunoassays or mass spectrometry assays for Alzheimer's disease, Lewy body dementia, and frontotemporal dementia. In addition, we explain the approach to prepare the market implementation of novel biomarkers and assays. Moreover, we describe the development of computational protein state and interaction prediction models to support biomarker development, such as the prediction of epitopes. Lastly, we reflect upon activities involved in the biomarker development process to deduce a best-practice roadmap for biomarker development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA