Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(21): 22046-22059, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37918441

RESUMO

Despite exciting advances in gene editing, the efficient delivery of genetic tools to extrahepatic tissues remains challenging. This holds particularly true for the skin, which poses a highly restrictive delivery barrier. In this study, we ran a head-to-head comparison between Cas9 mRNA or ribonucleoprotein (RNP)-loaded lipid nanoparticles (LNPs) to deliver gene editing tools into epidermal layers of human skin, aiming for in situ gene editing. We observed distinct LNP composition and cell-specific effects such as an extended presence of RNP in slow-cycling epithelial cells for up to 72 h. While obtaining similar gene editing rates using Cas9 RNP and mRNA with MC3-based LNPs (10-16%), mRNA-loaded LNPs proved to be more cytotoxic. Interestingly, ionizable lipids with a pKa ∼ 7.1 yielded superior gene editing rates (55%-72%) in two-dimensional (2D) epithelial cells while no single guide RNA-dependent off-target effects were detectable. Unexpectedly, these high 2D editing efficacies did not translate to actual skin tissue where overall gene editing rates between 5%-12% were achieved after a single application and irrespective of the LNP composition. Finally, we successfully base-corrected a disease-causing mutation with an efficacy of ∼5% in autosomal recessive congenital ichthyosis patient cells, showcasing the potential of this strategy for the treatment of monogenic skin diseases. Taken together, this study demonstrates the feasibility of an in situ correction of disease-causing mutations in the skin that could provide effective treatment and potentially even a cure for rare, monogenic, and common skin diseases.


Assuntos
Nanopartículas , Dermatopatias , Humanos , Edição de Genes/métodos , Lipossomos , Ribonucleoproteínas/genética , RNA Mensageiro
2.
J Toxicol Environ Health A ; 86(21): 803-815, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37565650

RESUMO

Nosocomial infections (NIs) appear in patients under medical care in the hospital. The surveillance of the bacterial communities employing high-resolution 16S rRNA profiling, known as metabarcoding, represents a reliable method to establish factors that may influence the composition of the bacterial population during NIs. The present study aimed to utilize high-resolution 16S rRNA profiling to identify high bacterial diversity by analyzing 11 inside and 10 outside environments from the General Hospital of Ribeirão Preto Medical School, Brazil. Our results identified a high bacterial diversity, and among these, the most abundant bacterial genera linked to NIs were Cutibacterium, Streptococcus, Staphylococcus, and Corynebacterium. A Acinetobacter was detected in cafeterias, bus stops, and adult and pediatric intensive care units (ICUs). Data suggest an association between transport and alimentation areas proximal to the hospital ICU environment. Interestingly, the correlation and clusterization analysis showed the potential of the external areas to directly influence the ICU pediatric department microbial community, including the outpatient's clinic, visitor halls, patient reception, and the closest cafeterias. Our results demonstrate that high-resolution 16S rRNA profiling is a robust and reliable tool for bacterial genomic surveillance. In addition, the metabarcoding approach might help elaborate decontamination policies, and consequently reduce NIs.


Assuntos
Infecção Hospitalar , Microbiota , Adulto , Criança , Humanos , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , RNA Ribossômico 16S/genética , Bactérias/genética , Hospitais
3.
Sci Rep ; 12(1): 12622, 2022 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-35871073

RESUMO

Pressure injuries, also known as pressure ulcers, are regions of localized damage to the skin and/or underlying tissue. Repeated rounds of ischemia-reperfusion (I/R) have a major causative role for tissue damage in pressure injury. Ischemia prevents oxygen/nutrient supply, and restoration of blood flow induces a burst of reactive oxygen species that damages blood vessels, surrounding tissues and can halt blood flow return. Minimizing the consequences of repeated I/R is expected to provide a protective effect against pressure injury. Sulfaphenazole (SP), an off patent sulfonamide antibiotic, is a potent CYP 2C6 and CYP 2C9 inhibitor, functioning to decrease post-ischemic vascular dysfunction and increase blood flow. The therapeutic effect of SP on pressure injury was therefore investigated in apolipoprotein E knockout mice, a model of aging susceptible to ischemic injury, which were subjected to repeated rounds of I/R-induced skin injury. SP reduced overall severity, improved wound closure and increased wound tensile strength compared to vehicle-treated controls. Saliently, SP restored tissue perfusion in and around the wound rapidly to pre-injury levels, decreased tissue hypoxia, and reduced both inflammation and fibrosis. SP also demonstrated bactericidal activity through enhanced M1 macrophage activity. The efficacy of SP in reducing thermal injury severity was also demonstrated. SP is therefore a potential therapeutic option for pressure injury and other ischemic skin injuries.


Assuntos
Úlcera por Pressão , Traumatismo por Reperfusão , Sulfafenazol , Animais , Camundongos , Isquemia , Perfusão , Espécies Reativas de Oxigênio , Traumatismo por Reperfusão/tratamento farmacológico , Sulfafenazol/farmacologia
4.
Br J Pharmacol ; 179(12): 2938-2952, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34978070

RESUMO

BACKGROUND AND PURPOSE: Metabolic and vascular dysfunction are common features of obesity. Aryl hydrocarbon receptor (AhR) regulates lipid metabolism and vascular homeostasis, but whether vascular AhR are activated in obesity or have a protective and/or harmful effects on vascular function in obesity are unknown. Our study addresses whether AhR activation contributes to obesity-associated vascular dysfunction and the mechanisms involved in these AhR effects. EXPERIMENTAL APPROACH: Male AhR KO (Ahr-/- ) and WT mice were fed either control or a HF (high-fat) diet for 10 weeks. Metabolic and inflammatory parameters were measured in serum and adipose tissue. Vascular reactivity (isometric force) was evaluated using a myography. Endothelial NOS (eNOS) and AhR protein expression was determined by western blot, Cyp1A1 and Nos3 gene expression by RT-PCR and.NO production was quantified by DAF fluorescence. KEY RESULTS: HF diet increased total serum HDL and LDL, as well as vascular AhR protein expression and proinflammatory cytokines in the adipose tissue. HF diet decreased endothelium-dependent vasodilation. AhR deletion protected mice from HF diet-induced dyslipidaemia, weight gain and inflammatory processes. HF diet-induced endothelial dysfunction was attenuated in Ahr-/- mice. Vessels from Ahr-/- mice exhibited a greater NO reserve. In cultured endothelial cells, lysophosphatidylcholine (LPC) a major component of LDL and oxidized LDL [oxLDL]) reduced Nos3 gene expression and NO production. Antagonism of the AhR inhibited LPC effects on endothelial cells and induced decreased endothelium-dependent vasodilation. CONCLUSION AND IMPLICATIONS: AhR deletion attenuates HF diet-induced dyslipidaemia and vascular dysfunction by improving eNOS/NO signalling. Targeting AhRs may prevent obesity-associated vascular dysfunction.


Assuntos
Dieta Hiperlipídica , Receptores de Hidrocarboneto Arílico , Animais , Dieta Hiperlipídica/efeitos adversos , Células Endoteliais/metabolismo , Endotélio Vascular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Vasodilatação/fisiologia
5.
NPJ Aging Mech Dis ; 7(1): 6, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674592

RESUMO

Pressure injuries (PIs), also known as bedsores or pressure ulcers, are a major cause of death and morbidity in the elderly. The serine protease, Granzyme B (GzmB), contributes to skin aging and impaired wound healing. Aging is a major risk factor for PIs; thus, the role of GzmB in PI pathogenesis was investigated. GzmB levels in human PI tissue and wound fluids were markedly elevated. A causative role for GzmB was assessed in GzmB knockout (GzmB-/-) and wild-type (WT) mice using a murine model of PI. An apolipoprotein E knockout (ApoE-/-) model of aging and vascular dysfunction was also utilized to assess GzmB in a relevant age-related model better resembling tissue perfusion in the elderly. PI severity displayed no difference between young GzmB-/- and WT mice. However, in aged mice, PI severity was reduced in mice lacking GzmB. Mechanistically, GzmB increased vascular wall inflammation and impaired extracellular matrix remodeling. Together, GzmB is an important contributor to age-dependent impaired PI healing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA