Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Front Microbiol ; 15: 1366744, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638907

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is increasingly recognized for its global prevalence and potential progression to more severe liver diseases such as non-alcoholic steatohepatitis (NASH). The gut microbiota plays a pivotal role in the pathogenesis of NAFLD, yet the detailed characteristics and ecological alterations of gut microbial communities during the progression from non-alcoholic fatty liver (NAFL) to NASH remain poorly understood. Methods: In this study, we conducted a comparative analysis of gut microbiota composition in individuals with NAFL and NASH to elucidate differences and characteristics. We utilized 16S rRNA sequencing to compare the intestinal gut microbiota among a healthy control group (65 cases), NAFL group (64 cases), and NASH group (53 cases). Random forest machine learning and database validation methods were employed to analyze the data. Results: Our findings indicate a significant decrease in the diversity of intestinal flora during the progression of NAFLD (p < 0.05). At the phylum level, high abundances of Bacteroidetes and Fusobacteria were observed in both NAFL and NASH patients, whereas Firmicutes were less abundant. At the genus level, a significant decrease in Prevotella expression was seen in the NAFL group (AUC 0.738), whereas an increase in the combination of Megamonas and Fusobacterium was noted in the NASH group (AUC 0.769). Furthermore, KEGG pathway analysis highlighted significant disturbances in various types of glucose metabolism pathways in the NASH group compared to the NAFL group, as well as notably compromised flavonoid and flavonol biosynthesis functions. The study uncovers distinct microbiota characteristics and microecological changes within the gut during the transition from NAFL to NASH, providing insights that could facilitate the discovery of novel biomarkers and therapeutic targets for NAFLD.

2.
Biomolecules ; 13(5)2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37238739

RESUMO

Recent progress in CRISPR gene editing tools has substantially increased the opportunities for curing devastating genetic diseases. Here we compare in-frame deletion by CRISPR-based non-homologous blunt end joining (NHBEJ), homology-directed repair (HDR), and prime editing (PE, PE2, and PE3)-based correction of two Duchenne Muscular Dystrophy (DMD) loss-of-function mutations (c.5533G>T and c.7893delC). To enable accurate and rapid evaluation of editing efficiency, we generated a genomically integrated synthetic reporter system (VENUS) carrying the DMD mutations. The VENUS contains a modified enhanced green fluorescence protein (EGFP) gene, in which expression was restored upon the CRISPR-mediated correction of DMD loss-of-function mutations. We observed that the highest editing efficiency was achieved by NHBEJ (74-77%), followed by HDR (21-24%) and PE2 (1.5%) in HEK293T VENUS reporter cells. A similar HDR (23%) and PE2 (1.1%) correction efficiency is achieved in fibroblast VENUS cells. With PE3 (PE2 plus nicking gRNA), the c.7893delC correction efficiency was increased 3-fold. Furthermore, an approximately 31% correction efficiency of the endogenous DMD: c.7893delC is achieved in the FACS-enriched HDR-edited VENUS EGFP+ patient fibroblasts. We demonstrated that a highly efficient correction of DMD loss-of-function mutations in patient cells can be achieved by several means of CRISPR gene editing.


Assuntos
Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/metabolismo , Distrofina/genética , Sistemas CRISPR-Cas/genética , Células HEK293 , Terapia Genética , Mutação
3.
Front Neurosci ; 17: 1116087, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875658

RESUMO

Introduction: The gradual loss of motor neurons (MNs) in the brain and spinal cord is a hallmark of amyotrophic lateral sclerosis (ALS), but the mechanisms underlying neurodegeneration in ALS are still not fully understood. Methods: Based on 75 ALS-pathogenicity/susceptibility genes and large-scale single-cell transcriptomes of human/mouse brain/spinal cord/muscle tissues, we performed an expression enrichment analysis to identify cells involved in ALS pathogenesis. Subsequently, we created a strictness measure to estimate the dosage requirement of ALS-related genes in linked cell types. Results: Remarkably, expression enrichment analysis showed that α- and γ-MNs, respectively, are associated with ALS-susceptibility genes and ALS-pathogenicity genes, revealing differences in biological processes between sporadic and familial ALS. In MNs, ALS-susceptibility genes exhibited high strictness, as well as the ALS-pathogenicity genes with known loss of function mechanism, indicating the main characteristic of ALS-susceptibility genes is dosage-sensitive and the loss of function mechanism of these genes may involve in sporadic ALS. In contrast, ALS-pathogenicity genes with gain of function mechanism exhibited low strictness. The significant difference of strictness between loss of function genes and gain of function genes provided a priori understanding for the pathogenesis of novel genes without an animal model. Besides MNs, we observed no statistical evidence for an association between muscle cells and ALS-related genes. This result may provide insight into the etiology that ALS is not within the domain of neuromuscular diseases. Moreover, we showed several cell types linked to other neurological diseases [i.e., spinocerebellar ataxia (SA), hereditary motor neuropathies (HMN)] and neuromuscular diseases [i.e. hereditary spastic paraplegia (SPG), spinal muscular atrophy (SMA)], including an association between Purkinje cells in brain and SA, an association between α-MNs in spinal cord and SA, an association between smooth muscle cells and SA, an association between oligodendrocyte and HMN, a suggestive association between γ-MNs and HMN, a suggestive association between mature skeletal muscle and HMN, an association between oligodendrocyte in brain and SPG, and no statistical evidence for an association between cell type and SMA. Discussion: These cellular similarities and differences deepened our understanding of the heterogeneous cellular basis of ALS, SA, HMN, SPG, and SMA.

4.
Front Cell Dev Biol ; 10: 1020490, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438554

RESUMO

Transposable elements (TEs) and transcription factors (TFs) are involved in the precise regulation of gene expression during the preimplantation stage. Activation of TEs is a key event for mammalian embryonic genome activation and preimplantation early embryonic development. TFs are involved in the regulation of drastic changes in gene expression patterns, but an inventory of the interplay between TEs and TFs during normal/abnormal human embryonic development is still lacking. Here we used single-cell RNA sequencing data generated from biparental and uniparental embryos to perform an integrative analysis of TE and TF expression. Our results showed that endogenous retroviruses (ERVs) are mainly expressed during the minor embryonic genome activation (EGA) process of early embryos, while Alu is gradually expressed in the middle and later stages. Some important ERVs (e.g., LTR5_Hs, MLT2A1) and Alu TEs are expressed at significantly lower levels in androgenic embryos. Integrative analysis revealed that the expression of the transcription factors CTCF and POU5F1 is correlated with the differential expression of ERV TEs. Comparative coexpression network analysis further showed distinct expression levels of important TFs (e.g., LEUTX and ZSCAN5A) in dizygotic embryos vs. parthenogenetic and androgenic embryos. This systematic investigation of TE and TF expression in human early embryonic development by single-cell RNA sequencing provides valuable insights into mammalian embryonic development.

6.
Cell Rep Med ; 3(9): 100740, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36099918

RESUMO

The established causal genes in Alzheimer's disease (AD), APP, PSEN1, and PSEN2, are functionally characterized using biomarkers, capturing an in vivo profile reflecting the disease's initial preclinical phase. Mutations in SORL1, encoding the endosome recycling receptor SORLA, are found in 2%-3% of individuals with early-onset AD, and SORL1 haploinsufficiency appears to be causal for AD. To test whether SORL1 can function as an AD causal gene, we use CRISPR-Cas9-based gene editing to develop a model of SORL1 haploinsufficiency in Göttingen minipigs, taking advantage of porcine models for biomarker investigations. SORL1 haploinsufficiency in young adult minipigs is found to phenocopy the preclinical in vivo profile of AD observed with APP, PSEN1, and PSEN2, resulting in elevated levels of ß-amyloid (Aß) and tau preceding amyloid plaque formation and neurodegeneration, as observed in humans. Our study provides functional support for the theory that SORL1 haploinsufficiency leads to endosome cytopathology with biofluid hallmarks of autosomal dominant AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Animais , Biomarcadores , Haploinsuficiência/genética , Humanos , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas de Membrana Transportadoras/genética , Suínos , Porco Miniatura/metabolismo
7.
Nat Commun ; 13(1): 4049, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831290

RESUMO

Methods for sensitive and high-throughput evaluation of CRISPR RNA-guided nucleases (RGNs) off-targets (OTs) are essential for advancing RGN-based gene therapies. Here we report SURRO-seq for simultaneously evaluating thousands of therapeutic RGN OTs in cells. SURRO-seq captures RGN-induced indels in cells by pooled lentiviral OTs libraries and deep sequencing, an approach comparable and complementary to OTs detection by T7 endonuclease 1, GUIDE-seq, and CIRCLE-seq. Application of SURRO-seq to 8150 OTs from 110 therapeutic RGNs identifies significantly detectable indels in 783 OTs, of which 37 OTs are found in cancer genes and 23 OTs are further validated in five human cell lines by targeted amplicon sequencing. Finally, SURRO-seq reveals that thermodynamically stable wobble base pair (rG•dT) and free binding energy strongly affect RGN specificity. Our study emphasizes the necessity of thoroughly evaluating therapeutic RGN OTs to minimize inevitable off-target effects.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , RNA Guia de Cinetoplastídeos , Sistemas CRISPR-Cas/genética , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Endonucleases/genética , Endonucleases/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , RNA Guia de Cinetoplastídeos/genética , Ribonucleases/metabolismo
8.
Nat Commun ; 13(1): 3620, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750885

RESUMO

Pigs are valuable large animal models for biomedical and genetic research, but insights into the tissue- and cell-type-specific transcriptome and heterogeneity remain limited. By leveraging single-cell RNA sequencing, we generate a multiple-organ single-cell transcriptomic map containing over 200,000 pig cells from 20 tissues/organs. We comprehensively characterize the heterogeneity of cells in tissues and identify 234 cell clusters, representing 58 major cell types. In-depth integrative analysis of endothelial cells reveals a high degree of heterogeneity. We identify several functionally distinct endothelial cell phenotypes, including an endothelial to mesenchymal transition subtype in adipose tissues. Intercellular communication analysis predicts tissue- and cell type-specific crosstalk between endothelial cells and other cell types through the VEGF, PDGF, TGF-ß, and BMP pathways. Regulon analysis of single-cell transcriptome of microglia in pig and 12 other species further identifies MEF2C as an evolutionally conserved regulon in the microglia. Our work describes the landscape of single-cell transcriptomes within diverse pig organs and identifies the heterogeneity of endothelial cells and evolutionally conserved regulon in microglia.


Assuntos
Células Endoteliais , Microglia , Animais , Microglia/metabolismo , Fenótipo , Regulon/genética , Análise de Célula Única , Suínos , Transcriptoma
9.
Clin Transl Med ; 12(4): e817, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35474296

RESUMO

BACKGROUND: Extrachromosomal circular deoxyribonucleic acid (eccDNA) is evolving as a valuable biomarker, while little is known about its presence in urine. METHODS: Here, we report the discovery and analysis of urinary cell-free eccDNAs (ucf-eccDNAs) in healthy controls and patients with advanced chronic kidney disease (CKD) by Circle-Seq. RESULTS: Millions of unique ucf-eccDNAs were identified and comprehensively characterised. The ucf-eccDNAs are GC-rich. Most ucf-eccDNAs are less than 1000 bp and are enriched in four pronounced peaks at 207, 358, 553 and 732 bp. Analysis of the genomic distribution of ucf-eccDNAs shows that eccDNAs are found on all chromosomes but enriched on chromosomes 17, 19 and 20 with a high density of protein-coding genes, CpG islands, short interspersed transposable elements (SINEs) and simple repeat elements. Analysis of eccDNA junction sequences further suggests that microhomology and palindromic repeats might be involved in eccDNA formation. The ucf-eccDNAs in CKD patients are significantly higher than those in healthy controls. Moreover, eccDNA with miRNA genes is highly enriched in CKD ucf-eccDNA. CONCLUSIONS: This work discovers and provides the first deep characterisation of ucf-eccDNAs and suggests ucf-eccDNA as a valuable noninnvasive biomarker for urogenital disorder diagnosis and monitoring.


Assuntos
DNA Circular , Insuficiência Renal Crônica , Biomarcadores , DNA , DNA Circular/genética , Feminino , Genômica , Humanos , Masculino , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/genética
10.
BMC Biol ; 20(1): 25, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35073880

RESUMO

BACKGROUND: There is a need for functional genome-wide annotation of the protein-coding genes to get a deeper understanding of mammalian biology. Here, a new annotation strategy is introduced based on dimensionality reduction and density-based clustering of whole-body co-expression patterns. This strategy has been used to explore the gene expression landscape in pig, and we present a whole-body map of all protein-coding genes in all major pig tissues and organs. RESULTS: An open-access pig expression map ( www.rnaatlas.org ) is presented based on the expression of 350 samples across 98 well-defined pig tissues divided into 44 tissue groups. A new UMAP-based classification scheme is introduced, in which all protein-coding genes are stratified into tissue expression clusters based on body-wide expression profiles. The distribution and tissue specificity of all 22,342 protein-coding pig genes are presented. CONCLUSIONS: Here, we present a new genome-wide annotation strategy based on dimensionality reduction and density-based clustering. A genome-wide resource of the transcriptome map across all major tissues and organs in pig is presented, and the data is available as an open-access resource ( www.rnaatlas.org ), including a comparison to the expression of human orthologs.


Assuntos
Genoma , Genômica , Animais , Perfilação da Expressão Gênica , Mamíferos , Anotação de Sequência Molecular , Especificidade de Órgãos , Suínos/genética , Transcriptoma
11.
Ann N Y Acad Sci ; 1507(1): 5-11, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34480358

RESUMO

Deciphering the genetic code of organisms with unusual phenotypes can help answer fundamental biological questions and provide insight into mechanisms relevant to human biomedical research. The cave salamander Proteus anguinus (Urodela: Proteidae), also known as the olm, is an example of a species with unique morphological and physiological adaptations to its subterranean environment, including regenerative abilities, resistance to prolonged starvation, and a life span of more than 100 years. However, the structure and sequence of the olm genome is still largely unknown owing to its enormous size, estimated at nearly 50 gigabases. An international Proteus Genome Research Consortium has been formed to decipher the olm genome. This perspective provides the scientific and biomedical rationale for exploring the olm genome and outlines potential outcomes, challenges, and methodological approaches required to analyze and annotate the genome of this unique amphibian.


Assuntos
Evolução Molecular , Genoma/genética , Longevidade/fisiologia , Doenças Metabólicas/genética , Proteidae/genética , Regeneração/fisiologia , Animais , Pesquisa em Genética , Humanos , Doenças Metabólicas/metabolismo
12.
Biomolecules ; 13(1)2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36671408

RESUMO

Primary endothelial cells (ECs), especially human umbilical vein endothelial cells (HUVECs), are broadly used in vascular biology. Gene editing of primary endothelial cells is known to be challenging, due to the low DNA transfection efficiency and the limited proliferation capacity of ECs. We report the establishment of a highly efficient and selection-free CRISPR gene editing approach for primary endothelial cells (HUVECs) with ribonucleoprotein (RNP) complex. We first optimized an efficient and cost-effective protocol for messenger RNA (mRNA) delivery into primary HUVECs by nucleofection. Nearly 100% transfection efficiency of HUVECs was achieved with EGFP mRNA. Using this optimized DNA-free approach, we tested RNP-mediated CRISPR gene editing of primary HUVECs with three different gRNAs targeting the HIF1A gene. We achieved highly efficient (98%) and biallelic HIF1A knockout in HUVECs without selection. The effects of HIF1A knockout on ECs' angiogenic characteristics and response to hypoxia were validated by functional assays. Our work provides a simple method for highly efficient gene editing of primary endothelial cells (HUVECs) in studies and manipulations of ECs functions.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , DNA , Células Endoteliais da Veia Umbilical Humana/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética
13.
Front Cell Dev Biol ; 9: 709498, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604214

RESUMO

Previous studies have revealed that transcription factors (TFs) play important roles in biparental (BI) early human embryogenesis. However, the contribution of TFs during early uniparental embryo development is still largely unknown. Here we systematically studied the expression profiles of transcription factors in early embryonic development and revealed the dynamic changes of TFs in human biparental and uniparental embryogenesis by single-cell RNA sequencing (scRNA-seq). In general, the TF expression model of uniparental embryos showed a high degree of conformity with biparental embryos. The detailed network analysis of three different types of embryos identified that 10 out of 17 hub TFs were shared or specifically owned, such as ZNF480, ZNF581, PHB, and POU5F1, were four shared TFs, ZFN534, GTF3A, ZNF771, TEAD4, and LIN28A, were androgenic (AG) specific TFs, and ZFP42 was the only one parthenogenetic (PG) specific TF. All the four shared TFs were validated using human embryonic stem cell (hESC) differentiation experiments; most of their target genes are responsible for stem cell maintenance and differentiation. We also found that Zf-C2H2, HMG, and MYB were three dominant transcription factor families that appeared in early embryogenesis. Altogether, our work provides a comprehensive regulatory framework and better understanding of TF function in human biparental and uniparental embryogenesis.

14.
iScience ; 24(7): 102718, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34258553

RESUMO

Tumor multiregion sequencing reveals intratumor heterogeneity (ITH) and clonal evolution playing a key role in tumor progression and metastases. Large-scale high-depth multiregional sequencing of colorectal cancer, comparative analysis among patients with right-sided colon cancer (RCC), left-sided colon cancer (LCC), and rectal cancer (RC), as well as the study of lymph node metastasis (LN) with extranodal tumor deposits (ENTDs) from evolutionary perspective remain weakly explored. Here, we recruited 68 patients with RCC (18), LCC (20), and RC (30). We performed high-depth whole-exome sequencing of 206 tumor regions including 176 primary tumors, 19 LN, and 11 ENTD samples. Our results showed ITH with a Darwinian pattern of evolution and the evolution pattern of LCC and RC was more complex and divergent than RCC. Genetic and evolutionary evidences found that both LN and ENTD originated from different clones. Moreover, ENTD was a distinct entity from LN and evolved later.

15.
Commun Biol ; 4(1): 717, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112917

RESUMO

Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by ADAR enzymes, is an essential post-transcriptional modification. Although hundreds of thousands of RNA editing sites have been reported in mammals, brain-wide analysis of the RNA editing in the mammalian brain remains rare. Here, a genome-wide RNA-editing investigation is performed in 119 samples, representing 30 anatomically defined subregions in the pig brain. We identify a total of 682,037 A-to-I RNA editing sites of which 97% are not identified before. Within the pig brain, cerebellum and olfactory bulb are regions with most edited transcripts. The editing level of sites residing in protein-coding regions are similar across brain regions, whereas region-distinct editing is observed in repetitive sequences. Highly edited conserved recoding events in pig and human brain are found in neurotransmitter receptors, demonstrating the evolutionary importance of RNA editing in neurotransmission functions. Although potential data biases caused by age, sex or health status are not considered, this study provides a rich resource to better understand the evolutionary importance of post-transcriptional RNA editing.


Assuntos
Encéfalo/metabolismo , Edição de RNA , Suínos/genética , Adenosina/genética , Animais , Feminino , Regulação da Expressão Gênica , Inosina/genética , Masculino
16.
Nat Commun ; 12(1): 3238, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050182

RESUMO

The design of CRISPR gRNAs requires accurate on-target efficiency predictions, which demand high-quality gRNA activity data and efficient modeling. To advance, we here report on the generation of on-target gRNA activity data for 10,592 SpCas9 gRNAs. Integrating these with complementary published data, we train a deep learning model, CRISPRon, on 23,902 gRNAs. Compared to existing tools, CRISPRon exhibits significantly higher prediction performances on four test datasets not overlapping with training data used for the development of these tools. Furthermore, we present an interactive gRNA design webserver based on the CRISPRon standalone software, both available via https://rth.dk/resources/crispr/ . CRISPRon advances CRISPR applications by providing more accurate gRNA efficiency predictions than the existing tools.


Assuntos
Biologia Computacional/métodos , Aprendizado Profundo , Edição de Genes , Sistemas CRISPR-Cas/genética , Vetores Genéticos/genética , Células HEK293 , Humanos , Lentivirus/genética , Plasmídeos/genética , RNA Guia de Cinetoplastídeos/genética , Software
17.
Mol Ther Nucleic Acids ; 24: 403-415, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33868784

RESUMO

CRISPR gene therapy is one promising approach for treatment of Duchenne muscular dystrophy (DMD), which is caused by a large spectrum of mutations in the dystrophin gene. To broaden CRISPR gene editing strategies for DMD treatment, we report the efficient restoration of dystrophin expression in induced myotubes by SpCas9 and dual guide RNAs (gRNAs). We first sequenced 32 deletion junctions generated by this editing method and revealed that non-homologous blunt-end joining represents the major indel type. Based on this predictive repair outcome, efficient in-frame deletion of a part of DMD exon 51 was achieved in HEK293T cells with plasmids expressing SpCas9 and dual gRNAs. More importantly, we further corrected a frameshift mutation in human DMD (exon45del) fibroblasts with SpCas9-dual gRNA ribonucleoproteins. The edited DMD fibroblasts were transdifferentiated into myotubes by lentiviral-mediated overexpression of a human MYOD transcription factor. Restoration of DMD expression at both the mRNA and protein levels was confirmed in the induced myotubes. With further development, the combination of SpCas9-dual gRNA-corrected DMD patient fibroblasts and transdifferentiation may provide a valuable therapeutic strategy for DMD.

18.
Cell Metab ; 31(4): 862-877.e14, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32268117

RESUMO

Endothelial cell (EC) metabolism is an emerging target for anti-angiogenic therapy in tumor angiogenesis and choroidal neovascularization (CNV), but little is known about individual EC metabolic transcriptomes. By single-cell RNA sequencing 28,337 murine choroidal ECs (CECs) and sprouting CNV-ECs, we constructed a taxonomy to characterize their heterogeneity. Comparison with murine lung tumor ECs (TECs) revealed congruent marker gene expression by distinct EC phenotypes across tissues and diseases, suggesting similar angiogenic mechanisms. Trajectory inference predicted that differentiation of venous to angiogenic ECs was accompanied by metabolic transcriptome plasticity. ECs displayed metabolic transcriptome heterogeneity during cell-cycle progression and in quiescence. Hypothesizing that conserved genes are important, we used an integrated analysis, based on congruent transcriptome analysis, CEC-tailored genome-scale metabolic modeling, and gene expression meta-analysis in cross-species datasets, followed by in vitro and in vivo validation, to identify SQLE and ALDH18A1 as previously unknown metabolic angiogenic targets.


Assuntos
Células Endoteliais/metabolismo , Neoplasias Pulmonares/metabolismo , Degeneração Macular/metabolismo , Neovascularização Patológica/metabolismo , Transcriptoma , Animais , Células Endoteliais/citologia , Células Endoteliais/patologia , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência de RNA , Análise de Célula Única
20.
Science ; 367(6482)2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32139519

RESUMO

The brain, with its diverse physiology and intricate cellular organization, is the most complex organ of the mammalian body. To expand our basic understanding of the neurobiology of the brain and its diseases, we performed a comprehensive molecular dissection of 10 major brain regions and multiple subregions using a variety of transcriptomics methods and antibody-based mapping. This analysis was carried out in the human, pig, and mouse brain to allow the identification of regional expression profiles, as well as to study similarities and differences in expression levels between the three species. The resulting data have been made available in an open-access Brain Atlas resource, part of the Human Protein Atlas, to allow exploration and comparison of the expression of individual protein-coding genes in various parts of the mammalian brain.


Assuntos
Atlas como Assunto , Encéfalo/fisiologia , Regulação da Expressão Gênica , Proteínas do Tecido Nervoso/genética , Transcriptoma , Animais , Conjuntos de Dados como Assunto , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos/genética , Especificidade da Espécie , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA