Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 195(3): 1851-1865, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38573555

RESUMO

Starch is the major energy storage compound in plants. Both transient starch and long-lasting storage starch accumulate in the form of insoluble, partly crystalline granules. The structure of these granules is related to the structure of the branched polymer amylopectin: linear chains of glucose units organized in double helices that align to form semicrystalline lamellae, with branching points located in amorphous regions between them. EARLY STARVATION 1 (ESV1) and LIKE EARLY STARVATION 1 (LESV) proteins are involved in the maintenance of starch granule structure and in the phase transition of amylopectin, respectively, in Arabidopsis (Arabidopsis thaliana). These proteins contain a conserved tryptophan-rich C-terminal domain folded into an antiparallel ß-sheet, likely responsible for binding of the proteins to starch, and different N-terminal domains whose structure and function are unknown. In this work, we combined biochemical and biophysical approaches to analyze the structures of LESV and ESV1 and their interactions with the different starch polyglucans. We determined that both proteins interact with amylopectin but not with amylose and that only LESV is capable of interacting with amylopectin during starch biosynthesis. While the C-terminal domain interacts with amylopectin in its semicrystalline form, the N-terminal domain of LESV undergoes induced conformational changes that are probably involved in its specific function of mediating glucan phase transition. These results clarify the specific mechanism of action of these 2 proteins in the biosynthesis of starch granules.


Assuntos
Amilopectina , Proteínas de Arabidopsis , Arabidopsis , Amido , Amilopectina/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Amido/metabolismo , Amido/biossíntese , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ligação Proteica , Amilose/metabolismo
2.
Front Plant Sci ; 14: 1201386, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324674

RESUMO

Starch-branching enzymes (BEs) are essential for starch synthesis in both plants and algae where they influence the architecture and physical properties of starch granules. Within Embryophytes, BEs are classified as type 1 and type 2 depending on their substrate preference. In this article, we report the characterization of the three BE isoforms encoded in the genome of the starch producing green algae Chlamydomonas reinhardtii: two type 2 BEs (BE2 and BE3) and a single type 1 BE (BE1). Using single mutant strains, we analyzed the consequences of the lack of each isoform on both transitory and storage starches. The transferred glucan substrate and the chain length specificities of each isoform were also determined. We show that only BE2 and BE3 isoforms are involved in starch synthesis and that, although both isoforms possess similar enzymatic properties, BE3 is critical for both transitory and storage starch metabolism. Finally, we propose putative explanations for the strong phenotype differences evidenced between the C. reinhardtii be2 and be3 mutants, including functional redundancy, enzymatic regulation or alterations in the composition of multimeric enzyme complexes.

3.
Sci Adv ; 9(21): eadg7448, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37235646

RESUMO

Starch, the most abundant carbohydrate reserve in plants, primarily consists of the branched glucan amylopectin, which forms semi-crystalline granules. Phase transition from a soluble to an insoluble form depends on amylopectin architecture, requiring a compatible distribution of glucan chain lengths and a branch-point distribution. Here, we show that two starch-bound proteins, LIKE EARLY STARVATION 1 (LESV) and EARLY STARVATION 1 (ESV1), which have unusual carbohydrate-binding surfaces, promote the phase transition of amylopectin-like glucans, both in a heterologous yeast system expressing the starch biosynthetic machinery and in Arabidopsis plants. We propose a model wherein LESV serves as a nucleating role, with its carbohydrate-binding surfaces helping align glucan double helices to promote their phase transition into semi-crystalline lamellae, which are then stabilized by ESV1. Because both proteins are widely conserved, we suggest that protein-facilitated glucan crystallization may be a general and previously unrecognized feature of starch biosynthesis.


Assuntos
Amilopectina , Arabidopsis , Amilopectina/química , Amilopectina/metabolismo , Amido/química , Glucanos/química , Glucanos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas/metabolismo
4.
Sci Rep ; 10(1): 9932, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32555346

RESUMO

Rhizobia are nitrogen-fixing soil bacteria that can infect legume plants to establish root nodules symbiosis. To do that, a complex exchange of molecular signals occurs between plants and bacteria. Among them, rhizobial Nops (Nodulation outer proteins), secreted by a type III secretion system (T3SS) determine the host-specificity for efficient symbiosis with plant roots. Little is known about the molecular function of secreted Nops (also called effectors (T3E)) and their role in the symbiosis process. We performed the structure-function characterization of NopAA, a T3E from Sinorhizobium fredii by using a combination of X-ray crystallography, biochemical and biophysical approaches. This work displays for the first time a complete structural and biochemical characterization of a symbiotic T3E. Our results showed that NopAA has a catalytic domain with xyloglucanase activity extended by a N-terminal unfolded secretion domain that allows its secretion. We proposed that these original structural properties combined with the specificity of NopAA toward xyloglucan, a key component of root cell wall which is also secreted by roots in the soil, can give NopAA a strategic position to participate in recognition between bacteria and plant roots and to intervene in nodulation process.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Glucanos/metabolismo , Hidrolases/metabolismo , Sinorhizobium fredii/enzimologia , Sistemas de Secreção Tipo III/química , Xilanos/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Sistemas de Secreção Tipo III/metabolismo
5.
Mol Microbiol ; 114(1): 127-139, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32187735

RESUMO

In Caulobacter crescentus the combined action of chromosome replication and the expression of DNA methyl-transferase CcrM at the end of S-phase maintains a cyclic alternation between a full- to hemi-methylated chromosome. This transition of the chromosomal methylation pattern affects the DNA-binding properties of the transcription factor GcrA that controls the several key cell cycle functions. However, the molecular mechanism by which GcrA and methylation are linked to transcription is not fully elucidated yet. Using a combination of cell biology, genetics, and in vitro analysis, we deciphered how GcrA integrates the methylation pattern of several S-phase expressed genes to their transcriptional output. We demonstrated in vitro that transcription of ctrA from the P1 promoter in its hemi-methylated state is activated by GcrA, while in its fully methylated state GcrA had no effect. Further, GcrA and methylation together influence a peculiar distribution of creS transcripts, encoding for crescentin, the protein responsible for the characteristic shape of Caulobacter cells. This gene is duplicated at the onset of chromosome replication and the two hemi-methylated copies are spatially segregated. Our results indicated that GcrA transcribed only the copy where coding strand is methylated. In vitro transcription assay further substantiated this finding. As several of the cell cycle-regulated genes are also under the influence of methylation and GcrA-dependent transcriptional regulation, this could be a mechanism responsible for maintaining the gene transcription dosage during the S-phase.


Assuntos
Caulobacter crescentus/genética , Metilação de DNA/genética , Regulação Bacteriana da Expressão Gênica/genética , Transcrição Gênica/genética , DNA (Citosina-5-)-Metiltransferases/biossíntese , DNA (Citosina-5-)-Metiltransferases/genética , Proteínas de Ligação a DNA/genética , RNA Polimerases Dirigidas por DNA/genética , Regiões Promotoras Genéticas/genética , Fator sigma/genética
6.
Sci Rep ; 9(1): 18378, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804568

RESUMO

The water vole Arvicola terrestris is endemic to Europe where its outbreak generates severe economic losses for farmers. Our project aimed at characterising putative chemical signals used by this species, to develop new sustainable methods for population control that could also be used for this species protection in Great Britain. The water vole, as well as other rodents, uses specific urination sites as territorial and sex pheromone markers, still unidentified. Lateral scent glands and urine samples were collected from wild males and females caught in the field, at different periods of the year. Their volatile composition was analysed for each individual and not on pooled samples, revealing a specific profile of flank glands in October and a specific profile of urinary volatiles in July. The urinary protein content appeared more contrasted as males secrete higher levels of a lipocalin than females, whenever the trapping period. We named this protein arvicolin. Male and female liver transcript sequencing did not identify any expression of other odorant-binding protein sequence. This work demonstrates that even in absence of genome, identification of chemical signals from wild animals is possible and could be helpful in strategies of species control and protection.


Assuntos
Arvicolinae/urina , Ácidos Graxos Voláteis/urina , Fígado/química , Glândulas Odoríferas/química , Animais , Arvicolinae/fisiologia , Feminino , França , Lipocalinas , Masculino , Dinâmica Populacional , Glândulas Odoríferas/fisiologia , Estações do Ano , Atrativos Sexuais , Reino Unido
7.
J Bacteriol ; 197(4): 688-98, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25404693

RESUMO

Many bacterial pathogens use type three secretion systems (T3SS) to inject virulence factors, named effectors, directly into the cytoplasm of target eukaryotic cells. Most of the T3SS components are conserved among plant and animal pathogens, suggesting a common mechanism of recognition and secretion of effectors. However, no common motif has yet been identified for effectors allowing T3SS recognition. In this work, we performed a biochemical and structural characterization of the Salmonella SopB/SigE chaperone/effector complex by small-angle X-ray scattering (SAXS). Our results showed that the SopB/SigE complex is assembled in dynamic homohexameric-ring-shaped structures with an internal tunnel. In this ring, the chaperone maintains a disordered N-terminal end of SopB molecules, in a good position to be reached and processed by the T3SS. This ring dimensionally fits the ring-organized molecules of the injectisome, including ATPase hexameric rings; this organization suggests that this structural feature is important for ATPase recognition by T3SS. Our work constitutes the first evidence of the oligomerization of an effector, analogous to the organization of the secretion machinery, obtained in solution. As effectors share neither sequence nor structural identity, the quaternary oligomeric structure could constitute a strategy evolved to promote the specificity and efficiency of T3SS recognition.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Salmonella typhimurium/metabolismo , Fator sigma/química , Fator sigma/metabolismo , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos , Modelos Moleculares , Chaperonas Moleculares/genética , Estrutura Terciária de Proteína , Salmonella typhimurium/química , Salmonella typhimurium/enzimologia , Salmonella typhimurium/genética , Espalhamento a Baixo Ângulo , Fator sigma/genética
8.
Cell Cycle ; 13(20): 3232-40, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25485503

RESUMO

The cyclic adenosine monophosphate dependent kinase protein (PKA) controls a variety of cellular processes including cell cycle regulation. Here, we took advantages of genetically encoded FRET-based biosensors, using an AKAR-derived biosensor to characterize PKA activity during mitosis in living HeLa cells using a single-cell approach. We measured PKA activity changes during mitosis. HeLa cells exhibit a substantial increase during mitosis, which ends with telophase. An AKAREV T>A inactive form of the biosensor and H89 inhibitor were used to ascertain for the specificity of the PKA activity measured. On a spatial point of view, high levels of activity near to chromosomal plate during metaphase and anaphase were detected. By using the PKA inhibitor H89, we assessed the role of PKA in the maintenance of a proper division phenotype. While this treatment in our hands did not impaired cell cycle progression in a drastic manner, inhibition of PKA leads to a dramatic increase in chromososme misalignement on the spindle during metaphase that could result in aneuploidies. Our study emphasizes the insights that can be gained with genetically encoded FRET-based biosensors, which enable to overcome the shortcomings of classical methologies and unveil in vivo PKA spatiotemporal profiles in HeLa cells.


Assuntos
Técnicas Biossensoriais , Segregação de Cromossomos/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Mitose/fisiologia , Ciclo Celular/genética , Ciclo Celular/fisiologia , Segregação de Cromossomos/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Células HeLa , Humanos , Microscopia Confocal , Mitose/genética
9.
Biochim Biophys Acta ; 1834(12): 2564-72, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24075929

RESUMO

The TTSS is used by Salmonella and many bacterial pathogens to inject virulence factors directly into the cytoplasm of target eukaryotic cells. Once translocated these so-called effector proteins hijack a vast array of crucial cellular functions to the benefit of the bacteria. In the bacterial cytoplasm, some effectors are stabilized and maintained in a secretion competent state by interaction with specific type III chaperones. In this work we studied the conformation of the Chaperone Binding Domain of the effector named Salmonella Outer protein B (SopB) alone and in complex with its cognate chaperone SigE by a combination of biochemical, biophysical and structural approaches. Our results show that the N-terminus part of SopB is mainly composed by α-helices and unfolded regions whose organization/stabilization depends on their interaction with the different partners. This suggests that the partially unfolded state of this N-terminal region, which confers the adaptability of the effector to bind very different partners during the infection cycle, allows the bacteria to modulate numerous host cells functions limiting the number of translocated effectors.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Chaperonas Moleculares/química , Salmonella typhimurium/química , Fator sigma/metabolismo , Proteínas de Bactérias/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Fator sigma/genética
10.
PLoS Genet ; 9(5): e1003541, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23737758

RESUMO

Several regulators are involved in the control of cell cycle progression in the bacterial model system Caulobacter crescentus, which divides asymmetrically into a vegetative G1-phase (swarmer) cell and a replicative S-phase (stalked) cell. Here we report a novel functional interaction between the enigmatic cell cycle regulator GcrA and the N6-adenosine methyltransferase CcrM, both highly conserved proteins among Alphaproteobacteria, that are activated early and at the end of S-phase, respectively. As no direct biochemical and regulatory relationship between GcrA and CcrM were known, we used a combination of ChIP (chromatin-immunoprecipitation), biochemical and biophysical experimentation, and genetics to show that GcrA is a dimeric DNA-binding protein that preferentially targets promoters harbouring CcrM methylation sites. After tracing CcrM-dependent N6-methyl-adenosine promoter marks at a genome-wide scale, we show that these marks recruit GcrA in vitro and in vivo. Moreover, we found that, in the presence of a methylated target, GcrA recruits the RNA polymerase to the promoter, consistent with its role in transcriptional activation. Since methylation-dependent DNA binding is also observed with GcrA orthologs from other Alphaproteobacteria, we conclude that GcrA is the founding member of a new and conserved class of transcriptional regulators that function as molecular effectors of a methylation-dependent (non-heritable) epigenetic switch that regulates gene expression during the cell cycle.


Assuntos
Caulobacter crescentus/genética , Metilação de DNA/genética , Metiltransferases/genética , Transcrição Gênica , Adenosina/genética , Alphaproteobacteria/crescimento & desenvolvimento , Sequência de Aminoácidos , Caulobacter crescentus/crescimento & desenvolvimento , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Epigênese Genética , Regulação Bacteriana da Expressão Gênica , Metiltransferases/metabolismo , Regiões Promotoras Genéticas
11.
Proc Natl Acad Sci U S A ; 107(40): 17351-5, 2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20855615

RESUMO

Two-component sensory transduction systems control important bacterial programs. In Bordetella pertussis, expression of the virulence regulon is controlled by the unorthodox BvgAS two-component system. BvgS is the prototype of a family of sensor-kinases that harbor periplasmic domains homologous to bacterial solute-binding proteins. Although BvgAS is active under laboratory conditions, no activating signal has been identified, only negative modulators. Here we show that the second periplasmic domain of BvgS interacts with modulators and adopts a Venus flytrap (VFT) fold. X-ray crystallography reveals that the two lobes of VFT2 delimitate a ligand-binding cavity enclosing fortuitous ligands. Most substitutions of putative ligand-binding residues in the VFT2 cavity keep BvgS active, and alteration of the cavity's electrostatic potential affects responsiveness to modulation. The crystal structure of this VFT2 variant conferring constitutive kinase activity to BvgS shows a closed cavity with another nonspecific ligand. Thus, VFT2 is closed and active without a specific agonist ligand, in contrast to typical VFTs. Modulators are antagonists of VFT2 that interrupt signaling. BvgAS is active for most of the B. pertussis infectious cycle, consistent with the proposed mechanism.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bordetella pertussis/metabolismo , Periplasma/enzimologia , Estrutura Terciária de Proteína , Transdução de Sinais/fisiologia , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Bordetella pertussis/patogenicidade , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Desnaturação Proteica , Fatores de Transcrição/genética
12.
Biochem Biophys Res Commun ; 399(1): 104-10, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20647002

RESUMO

ERM is a member of the PEA3 group of the Ets transcription factor family that plays important roles in development and tumorigenesis. The PEA3s share an N-terminal transactivation domain (TADn) whose activity is inhibited by small ubiquitin-like modifier (SUMO). However, the consequences of sumoylation and its underlying molecular mechanism remain unclear. The domain structure of ERM TADn alone or modified by SUMO-1 was analyzed using small-angle X-ray scattering (SAXS). Low resolution shapes determined ab initio from the scattering data indicated an elongated shape and an unstructured conformation of TADn in solution. Covalent attachment of SUMO-1 does not perturb the structure of TADn as indicated by the linear arrangement of the SUMO moiety with respect to TADn. Thus, ERM belongs to the growing family of proteins that contain intrinsically unstructured regions. The flexible nature of TADn may be instrumental for ERM recognition and binding to diverse molecular partners.


Assuntos
Proteínas de Ligação a DNA/química , Proteína SUMO-1/metabolismo , Fatores de Transcrição/química , Ativação Transcricional , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Difração de Raios X
13.
J Bacteriol ; 190(23): 7614-20, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18835984

RESUMO

Although Mycobacterium tuberculosis and related species are considered to be typical endosomal pathogens, recent studies have suggested that mycobacteria can be present in the cytoplasm of infected cells and cause cytoskeleton rearrangements, the mechanisms of which remain unknown. Here, we used single-molecule force spectroscopy to demonstrate that the heparin-binding hemagglutinin (HBHA), a surface adhesin from Mycobacterium tuberculosis displaying sequence similarities with actin-binding proteins, is able to bind to actin. Force curves recorded between actin and the coiled-coil, N-terminal domain of HBHA showed a bimodal distribution of binding forces reflecting the detection of single and double HBHA-actin interactions. Force curves obtained between actin and the lysine-rich C-terminal domain of HBHA showed a broader distribution of binding events, suggesting they originate primarily from intermolecular electrostatic bridges between cationic HBHA domains and anionic actin residues. We also explored the dynamics of the HBHA-actin interaction, showing that the binding force and binding frequency increased with the pulling speed and contact time, respectively. Taken together, our data indicate that HBHA is able to specifically bind actin, via both its N-terminal and C-terminal domains, strongly suggesting a role of the HBHA-actin interaction in the pathogenesis of mycobacterial diseases.


Assuntos
Actinas/metabolismo , Lectinas/metabolismo , Mycobacterium tuberculosis/metabolismo , Actinas/química , Lectinas/química , Ligação Proteica , Análise Espectral/métodos
14.
Artigo em Inglês | MEDLINE | ID: mdl-18765910

RESUMO

Proteins with both peptidylprolyl isomerase (PPIase) and chaperone activities play a crucial role in protein folding in the periplasm of Gram-negative bacteria. Few such proteins have been structurally characterized and to date only the crystal structure of SurA from Escherichia coli has been reported. Par27, the prototype of a new group of parvulins, has recently been identified. Par27 exhibits both chaperone and PPIase activities in vitro and is the first identified parvulin protein that forms dimers in solution. Par27 has been expressed in E. coli. The protein was purified using affinity and gel-filtration chromatographic techniques and crystallized in two different crystal forms. Form A, which belongs to space group P2 (unit-cell parameters a = 42.2, b = 142.8, c = 56.0 A, beta = 95.1 degrees ), diffracts to 2.8 A resolution, while form B, which belongs to space group C222 (unit-cell parameters a = 54.6, b = 214.1, c = 57.8 A), diffracts to 2.2 A resolution. Preliminary diffraction data analysis agreed with the presence of one monomer in the asymmetric unit of the orthorhombic crystal form and two in the monoclinic form.


Assuntos
Bordetella pertussis/enzimologia , Proteínas de Transporte/química , Peptidilprolil Isomerase/química , Proteínas de Transporte/isolamento & purificação , Cristalização , Cristalografia por Raios X , Proteínas de Escherichia coli , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/isolamento & purificação
15.
J Immunol ; 181(3): 2036-43, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18641341

RESUMO

TLRs trigger immunity by detecting microbe-associated molecular patterns (MAMPs). Flagellin is a unique MAMP because it harbors 1) an antigenic hypervariable region and 2) a conserved domain involved in TLR5-dependent systemic and mucosal proinflammatory and adjuvant activities. In this study, the contribution of the flagellin domains in TLR5 activation was investigated. We showed that TLR5 signaling can be neutralized in vivo by flagellin-specific Abs, which target the conserved domain. However, deletions of flagellin's hypervariable region abrogated the protein's intrinsic ability to trigger the production of neutralizing Abs. The fact that MAMP-specific Abs block TLR-mediated responses shows that this type of neutralization is a novel mechanism for down-regulating innate immunity. The stimulation of mucosal innate immunity and adjuvancy to foreign Ag was not altered by the hypervariable domain deletions. In contrast, this domain is essential to trigger systemic innate immunity, suggesting that there are distinct mechanisms for TLR5 activation in systemic and mucosal compartments. In summary, specific MAMP determinants control the production of neutralizing Abs and the compartmentalization of innate responses.


Assuntos
Regiões Determinantes de Complementaridade/imunologia , Flagelina/imunologia , Flagelina/metabolismo , Receptor 5 Toll-Like/imunologia , Receptor 5 Toll-Like/metabolismo , Animais , Células CACO-2 , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/farmacologia , Feminino , Flagelina/genética , Deleção de Genes , Humanos , Imunidade , Imunidade Inata/imunologia , Camundongos , Modelos Moleculares , Estrutura Quaternária de Proteína , Salmonella enterica/genética , Salmonella enterica/imunologia , Salmonella enterica/metabolismo
16.
J Mol Biol ; 370(1): 93-106, 2007 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-17499270

RESUMO

Gram-negative bacteria have developed several different transport systems for solute uptake. One of these, the tripartite ATP independent periplasmic transport system (TRAP-T), makes use of an extracytoplasmic solute receptor (ESR) which captures specific solutes with high affinity and transfers them to their partner permease complex located in the bacterial inner membrane. We hereby report the structures of DctP6 and DctP7, two such ESRs from Bordetella pertussis. These two proteins display a high degree of sequence and structural similarity and possess the "Venus flytrap" fold characteristic of ESRs, comprising two globular alpha/beta domains hinged together to form a ligand binding cleft. DctP6 and DctP7 both show a closed conformation due to the presence of one pyroglutamic acid molecule bound by highly conserved residues in their respective ligand binding sites. BLAST analyses have revealed that the DctP6 and DctP7 residues involved in ligand binding are strictly present in a number of predicted TRAP-T ESRs from other bacteria. In most cases, the genes encoding these TRAP-T systems are located in the vicinity of a gene coding for a pyroglutamic acid metabolising enzyme. Both the high degree of conservation of these ligand binding residues and the genomic context of these TRAP-T-coding operons in a number of bacterial species, suggest that DctP6 and DctP7 constitute the prototypes of a novel TRAP-T DctP subfamily involved in pyroglutamic acid transport.


Assuntos
Proteínas de Bactérias/química , Bordetella pertussis/metabolismo , Proteínas de Membrana Transportadoras/química , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico/fisiologia , Bordetella pertussis/química , Bordetella pertussis/citologia , Cristalografia por Raios X , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Ácido Pirrolidonocarboxílico/química , Ácido Pirrolidonocarboxílico/metabolismo , Alinhamento de Sequência
17.
Artigo em Inglês | MEDLINE | ID: mdl-17012786

RESUMO

DctP6 and DctP7 are two Bordetella pertussis proteins which belong to the extracytoplasmic solute receptors (ESR) superfamily. ESRs are involved in the transport of substrates from the periplasm to the cytosol of Gram-negative bacteria. DctP6 and DctP7 have been crystallized and diffraction data were collected using a synchrotron-radiation source. DctP6 crystallized in space group P4(1)2(1)2, with unit-cell parameters a = 108.39, b = 108.39, c = 63.09 A, while selenomethionyl-derivatized DctP7 crystallized in space group P2(1)2(1)2(1), with unit-cell parameters a = 64.87, b = 149.83, c = 170.65 A. The three-dimensional structure of DctP7 will be determined by single-wavelength anomalous diffraction, while the DctP6 structure will be solved by molecular-replacement methods.


Assuntos
Proteínas de Bactérias/química , Bordetella pertussis , Proteínas de Membrana Transportadoras/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Bordetella pertussis/química , Cristalização , Cristalografia por Raios X , Citoplasma/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/isolamento & purificação , Dados de Sequência Molecular , Periplasma/metabolismo , Alinhamento de Sequência
18.
Acta Crystallogr D Biol Crystallogr ; 62(Pt 11): 1375-81, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17057341

RESUMO

The Bug proteins form a large family of periplasmic solute-binding receptors present in a number of bacterial species. Here, the crystal structure of Bordetella pertussis BugE, a member of the Bug family coded by the gene BP0250, is reported. It adopts the Venus flytrap architecture of periplasmic binding proteins, with two domains separated by a deep cleft. BugE has a bound ligand, identified as a glutamate. The structure of B. pertussis BugD, which is an aspartic acid transporter, has recently been reported. These structures reveal high conservation of the Bug architecture, despite limited sequence identity. They share a common carboxylate-binding motif defined by two strand-beta-turn-alpha-helix motifs, also involving two water molecules to bridge the carboxylate O atoms to the protein. The two water molecules are hydrogen bonded to a common main-chain carbonyl group. Although the features of the carboxylate-binding motif are totally conserved, the ligand in BugE is bound by its side-chain carboxylate group rather than by its alpha-carboxylate as in BugD. This specific ligand-binding motif is highly conserved in Bug proteins and the BugE structure suggests that the cavity of the Bug proteins might also accommodate carboxylated solutes other than amino acids. The vast expansion of the Bug family in several bacterial genera is likely to be explained by the possible diversity of ligands. No charged residues are involved in glutamate binding by BugE, unlike what has been described for all glutamate receptors reported so far.


Assuntos
Bordetella pertussis/química , Periplasma/química , Proteínas Periplásmicas de Ligação/química , Motivos de Aminoácidos , Bordetella pertussis/metabolismo , Cristalografia por Raios X/métodos , Ligantes , Periplasma/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Estrutura Terciária de Proteína
19.
J Mol Biol ; 356(4): 1014-26, 2006 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-16403514

RESUMO

Periplasmic binding proteins of a new family particularly well represented in Bordetella pertussis have been called Bug receptors. One B.pertussis Bug protein is part of a tripartite tricarboxylate transporter while the functions of the other 77 are unknown. We report the first structure of a Bug receptor, BugD. It adopts the characteristic Venus flytrap motif observed in other periplasmic binding proteins, with two globular domains bisected by a deep cleft. BugD displays a closed conformation resulting from the fortuitous capture of a ligand, identified from the electron density as an aspartate. The structure reveals a distinctive alpha carboxylate-binding motif, involving two water molecules that bridge the carboxylate oxygen atoms to the protein. Both water molecules are hydrogen bonded to a common carbonyl group from Ala14, and each forms a hydrogen bond with one carboxylate oxygen atom of the ligand. Additional hydrogen bonds are found between the ligand alpha carboxylate oxygen atoms and protein backbone amide groups and with a threonine hydroxyl group. This specific ligand-binding motif is highly conserved in Bug proteins, indicating that they may all be receptors of amino acids or other carboxylated solutes, with a similar binding mode. The present structure thus unveils the bases of ligand binding in this large family of periplasmic binding proteins, several hundred members of which have been identified in various bacterial species.


Assuntos
Proteínas de Bactérias/química , Bordetella pertussis/química , Proteínas de Membrana Transportadoras/química , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Ligantes , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Alinhamento de Sequência
20.
J Mol Biol ; 357(2): 457-70, 2006 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-16438985

RESUMO

Glutaminyl cyclases (QCs) (EC 2.3.2.5) catalyze the intramolecular cyclization of protein N-terminal glutamine residues into pyroglutamic acid with the concomitant liberation of ammonia. QCs may be classified in two groups containing, respectively, the mammalian enzymes, and the enzymes from plants, bacteria, and parasites. The crystal structure of the QC from the latex of Carica papaya (PQC) has been determined at 1.7A resolution. The structure was solved by the single wavelength anomalous diffraction technique using sulfur and zinc as anomalous scatterers. The enzyme folds into a five-bladed beta-propeller, with two additional alpha-helices and one beta hairpin. The propeller closure is achieved via an original molecular velcro, which links the last two blades into a large eight stranded beta-sheet. The zinc ion present in the PQC is bound via an octahedral coordination into an elongated cavity located along the pseudo 5-fold axis of the beta-propeller fold. This zinc ion presumably plays a structural role and may contribute to the exceptional stability of PQC, along with an extended hydrophobic packing, the absence of long loops, the three-joint molecular velcro and the overall folding itself. Multiple sequence alignments combined with structural analyses have allowed us to tentatively locate the active site, which is filled in the crystal structure either by a Tris molecule or an acetate ion. These analyses are further supported by the experimental evidence that Tris is a competitive inhibitor of PQC. The active site is located at the C-terminal entrance of the PQC central tunnel. W83, W110, W169, Q24, E69, N155, K225, F22 and F67 are highly conserved residues in the C-terminal entrance, and their putative role in catalysis is discussed. The PQC structure is representative of the plants, bacterial and parasite enzymes and contrasts with that of mammalian enzymes, that may possibly share a conserved scaffold of the bacterial aminopeptidase.


Assuntos
Aminoaciltransferases/química , Proteínas de Bactérias/química , Carica/enzimologia , Proteínas de Plantas/química , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Aminoaciltransferases/genética , Proteínas de Bactérias/genética , Domínio Catalítico , Cristalografia por Raios X , Glutamina/química , Glutamina/metabolismo , Modelos Moleculares , Estrutura Molecular , Proteínas de Plantas/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA