Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 372: 433-445, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38908756

RESUMO

Transdifferentiation (TD), a somatic cell reprogramming process that eliminates pluripotent intermediates, creates cells that are ideal for personalized anti-cancer therapy. Here, we provide the first evidence that extracellular vesicles (EVs) from TD-derived induced neural stem cells (Exo-iNSCs) are an efficacious treatment strategy for brain cancer. We found that genetically engineered iNSCs generated EVs loaded with the tumoricidal gene product TRAIL at nearly twice the rate of their parental fibroblasts, and TRAIL produced by iNSCs was naturally loaded into the lumen of EVs and arrayed across their outer membrane (Exo-iNSC-TRAIL). Uptake studies in ex vivo organotypic brain slice cultures showed that Exo-iNSC-TRAIL selectively accumulates within tumor foci, and co-culture assays demonstrated that Exo-iNSC-TRAIL killed metastatic and primary brain cancer cells more effectively than free TRAIL. In an orthotopic mouse model of brain cancer, Exo-iNSC-TRAIL reduced breast-to-brain tumor xenografts by approximately 3000-fold compared to treatment with free TRAIL, with all Exo-iNSC-TRAIL treated animals surviving through 90 days post-treatment. In additional in vivo testing against aggressive U87 and invasive GBM8 glioblastoma tumors, Exo-iNSC-TRAIL also induced a statistically significant increase in survival. These studies establish a novel, easily generated, stable, tumor-targeted EV to efficaciously treat multiple forms of brain cancer.

2.
bioRxiv ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38854085

RESUMO

Transdifferentiation (TD), a somatic cell reprogramming process that eliminates pluripotent intermediates, creates cells that are ideal for personalized anti-cancer therapy. Here, we provide the first evidence that extracellular vesicles (EVs) from TD-derived induced neural stem cells (Exo-iNSCs) are an efficacious treatment strategy for brain cancer. We found that genetically engineered iNSCs generated EVs loaded with the tumoricidal gene product TRAIL at nearly twice the rate as their parental fibroblasts, and the TRAIL produced by iNSCs were naturally loaded into the lumen of EVs and arrayed across their outer membrane (Exo-iNSC-TRAIL). Uptake studies in ex vivo organotypic brain slice cultures showed Exo-iNSC-TRAIL selectively accumulates within tumor foci, and co-culture assays showed that Exo-iNSC-TRAIL killed metastatic and primary brain cancer cells more effectively than free TRAIL. In an orthotopic mouse model of brain cancer, Exo-iNSC-TRAIL reduced breast-to-brain tumor xenografts around 3000-fold greater than treatment with free TRAIL, with all Exo-iNSC-TRAIL treated animals surviving through 90 days post-treatment. In additional in vivo testing against aggressive U87 and invasive GBM8 glioblastoma tumors, Exo-iNSC-TRAIL also induced a statistically significant increase in survival. These studies establish a new easily generated, stable, tumor-targeted EV to efficaciously treat multiple forms of brain cancer.

3.
Nat Commun ; 15(1): 4720, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830847

RESUMO

Bioadhesive materials and patches are promising alternatives to surgical sutures and staples. However, many existing bioadhesives do not meet the functional requirements of current surgical procedures and interventions. Here, we present a translational patch material that exhibits instant adhesion to tissues (2.5-fold stronger than Tisseel, an FDA-approved fibrin glue), ultra-stretchability (stretching to >300% its original length without losing elasticity), compatibility with rapid photo-projection (<2 min fabrication time/patch), and ability to deliver therapeutics. Using our established procedures for the in silico design and optimization of anisotropic-auxetic patches, we created next-generation patches for instant attachment to tissues while conforming to a broad range of organ mechanics ex vivo and in vivo. Patches coated with extracellular vesicles derived from mesenchymal stem cells demonstrate robust wound healing capability in vivo without inducing a foreign body response and without the need for patch removal that can cause pain and bleeding. We further demonstrate a single material-based, void-filling auxetic patch designed for the treatment of lung puncture wounds.


Assuntos
Adesivos Teciduais , Cicatrização , Animais , Humanos , Elasticidade , Células-Tronco Mesenquimais/citologia , Camundongos , Adesivo Tecidual de Fibrina , Masculino , Materiais Biocompatíveis/química
4.
bioRxiv ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38559120

RESUMO

Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) are a promising treatment for myocardial infarction, but their therapeutic efficacy is limited by inefficient accumulation at the target site. A non-invasive MSC EV therapy that enhances EV accumulation at the disease site and extends EV retention could significantly improve post-infarct cardiac regeneration. Here we show that EVs decorated with the next-generation of high-affinity heterodimerizing leucine zippers, termed high-affinity (HiA) Zippersomes, amplify targetable surface areas through in situ crosslinking and exhibited ∼7-fold enhanced accumulation within the infarcted myocardium in mice after three days and continued to be retained up to day 21, surpassing the performance of unmodified EVs. After myocardial infarction in mice, high-affinity Zippersomes increase the ejection fraction by 53% and 100% compared with unmodified EVs and PBS, respectively. This notable improvement in cardiac function played a crucial role in restoring healthy heart performance. High-affinity Zippersomes also robustly decrease infarct size by 52% and 60% compared with unmodified EVs and PBS, respectively, thus representing a promising platform for non-invasive vesicle delivery to the infarcted heart. Translational Impact Statement: Therapeutic delivery to the heart remains inefficient and poses a bottleneck in modern drug delivery. Surgical application and intramyocardial injection of therapeutics carry high risks for most heart attack patients. To address these limitations, we have developed a non-invasive strategy for efficient cardiac accumulation of therapeutics using in situ crosslinking. Our approach achieves high cardiac deposition of therapeutics without invasive intramyocardial injections. Patients admitted with myocardial infarction typically receive intravenous access, which would allow painless administration of Zippersomes alongside standard of care.

5.
Int J Pharm ; 653: 123844, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272193

RESUMO

Discovering new ligands for enhanced drug uptake and delivery has been the core interest of the drug delivery field. This study capitalizes on the natural "eat-me" signal of calreticulin (CRT), proposing a novel strategy for functionalizing liposomes to improve cellular uptake. CRT is presented on the surfaces of apoptotic cells, and it plays a crucial role in immunogenic cell death (ICD). This is because it is essential for antigen uptake via low-density lipoprotein (LDL) receptor-mediated phagocytosis. Inspired by this mechanism, we interrogated CRT's "eat-me" feature using CRT-derived peptides to functionalize liposomes. We studied liposomal formulation stability, properties, cellular uptake, toxicity, and intracellular trafficking in dendritic cells. We identified key peptide fragments of CRT, specifically from the hydrophilic P-domain, that are compatible with liposomal formulations. Contrary to the more hydrophobic N-domain peptides, the P-domain peptides induced significantly higher liposomal uptake in DC2.4 dendritic cells than cationic DOTAP and anionic DPPG liposomes without inducing toxicity. The P-domain-derived peptides led to enhanced liposomal uptake into DC2.4 dendritic cells compared to the standard DPPC liposomes. The uptake can be partially blocked by the receptor-associated protein (RAP). Upon internalization, P-domain-peptide-decorated liposomes showed higher co-localization with lysosomes compared to the standard DPPC liposomes. Our findings illuminate CRT's operational role and identify P-domain peptides as promising agents for developing biomimetic drug delivery systems that can potentially replicate CRT's "eat-me" function.


Assuntos
Calreticulina , Lipossomos , Lipossomos/química , Peptídeos/química , Sistemas de Liberação de Medicamentos , Células Dendríticas
6.
Biomater Sci ; 11(8): 2693-2698, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36994921

RESUMO

The discovery of new immune-modulating biomaterials is of significant value to immuno-engineering and therapy development. Here, we discovered that single-tailed heterocyclic carboxamide lipids preferentially modulated macrophages - but not dendritic cells - by interfering with sphingosine-1-phosphate-related pathways, consequently increasing interferon alpha expression. We further performed extensive downstream correlation analysis and determined key factors in physicochemical properties likely to modulate pro-inflammatory and anti-inflammatory immune responses. These properties will be useful for the rational design of the next generation of cell type-specific immune-modulating lipids.


Assuntos
Materiais Biocompatíveis , Macrófagos , Macrófagos/metabolismo , Materiais Biocompatíveis/metabolismo , Imunidade , Lipídeos
7.
Adv Healthc Mater ; 12(4): e2201094, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36349814

RESUMO

There has been extensive interest in cellular therapies for the treatment of myocardial infarction, but bottlenecks concerning cellular accumulation and retention remain. Here, a novel system of in situ crosslinking mesenchymal stem cells (MSCs) for the formation of a living depot at the infarct site is reported. Bone marrow-derived mesenchymal stem cells that are surface decorated with heterodimerizing leucine zippers, termed ZipperCells, are engineered. When delivered intravenously in sequential doses, it is demonstrated that ZipperCells can migrate to the infarct site, crosslink, and show ≈500% enhanced accumulation and ≈600% improvement in prolonged retention at 10 days after injection compared to unmodified MSCs. This study introduces an advanced approach to creating noninvasive therapeutics depots using cellular crosslinking and provides the framework for future scaffold-free delivery methods for cardiac repair.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Infarto do Miocárdio , Humanos , Infarto do Miocárdio/terapia , Transplante de Células-Tronco Mesenquimais/métodos
8.
Cells ; 9(3)2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182815

RESUMO

A limitation of using exosomes to their fullest potential is their limited secretion from cells, a major bottleneck to efficient exosome production and application. This is especially true for mesenchymal stem cells (MSCs), which can self-renew but have a limited expansion capacity, undergoing senescence after only a few passages, with exosomes derived from senescent stem cells showing impaired regenerative capacity compared to young cells. Here, we examined the effects of small molecule modulators capable of enhancing exosome secretion from MSCs. The treatment of MSCs with a combination of N-methyldopamine and norepinephrine robustly increased exosome production by three-fold without altering the ability of the MSC exosomes to induce angiogenesis, polarize macrophages to an anti-inflammatory phenotype, or downregulate collagen expression. These small molecule modulators provide a promising means to increase exosome production by MSCs.


Assuntos
Secreções Corporais/citologia , Proliferação de Células/fisiologia , Exossomos/metabolismo , Células-Tronco Mesenquimais/citologia , Proliferação de Células/genética , Células Cultivadas , Humanos , Macrófagos/citologia , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais/fisiologia
9.
Cell Mol Bioeng ; 12(5): 375-388, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31719921

RESUMO

INTRODUCTION: Treatment options for cancer metastases, the primary cause of cancer mortality, are limited. The chemokine receptor CXCR4 is an attractive therapeutic target in cancer because it mediates metastasis by inducing cancer cell and macrophage migration. Here we engineered carrier-free CXCR4-targeting RNA-protein nanoplexes that not only inhibited cellular migration but also polarized macrophages to the M1 phenotype. MATERIALS AND METHODS: A CXCR4-targeting single-chain variable fragment (scFv) antibody was fused to a 3030 Da RNA-binding protamine peptide (RSQSRSRYYRQRQRSRRRRRRS). Self-assembling nanoplexes were formed by mixing the CXCR4-scFv-protamine fusion protein (CXCR4-scFv-RBM) with miR-127-5p, a miRNA shown to mediate M1 macrophage polarization. RNA-protein nanoplexes were characterized with regard to their physicochemical properties and therapeutic efficacy. RESULTS: CXCR4-targeting RNA-protein nanoplexes simultaneously acted as a targeting ligand, a macrophage polarizing drug, and a miRNA delivery vehicle. Our carrier-free, RNA-protein nanoplexes specifically bound to CXCR4-positive macrophages and breast cancer cells, showed high drug loading (~ 90% w/w), and are non-toxic. Further, these RNA-protein nanoplexes significantly inhibited cancer and immune cell migration (75 to 99%), robustly polarized macrophages to the tumor-suppressive M1 phenotype, and inhibited tumor growth in a mouse model of triple-negative breast cancer. CONCLUSIONS: We engineered a novel class of non-toxic RNA-protein nanoplexes that modulate the tumor stroma. These nanoplexes are promising candidates for add-ons to clinically approved chemotherapeutics.

10.
Cancer Lett ; 442: 439-444, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30472182

RESUMO

Gap junctions are membrane channels found in all cells of the human body that are essential to cellular physiology. Gap junctions are formed from connexin proteins and are responsible for transfer of biologically active molecules, metabolites, and salts between neighboring cells or cells and their extracellular environment. Over the last few years, aberrant connexin 43 (Cx43) expression has been associated with cancer recurrence, metastatic spread, and poor survival. Here we provide an overview of the general structure and function of gap junctions and review their roles in different cancer types. We discuss new therapeutic approaches targeting Cx43 and potential new ways of exploiting gap junction transfer for drug delivery and anti-cancer treatment. The permeability of Cx43 channels to small molecules and macromolecules makes them highly attractive targets for delivering drugs directly into the cytoplasm. Cancer cells overexpressing Cx43 may be more permeable and sensitive to chemotherapeutics. Because Cx43 can either act as a tumor suppressor or oncogene, biomarker analysis and a better understanding of how Cx43 contextually mediates cancer phenotypes will be required to develop clinically viable Cx43-based therapies.


Assuntos
Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Neoplasias/metabolismo , Animais , Antineoplásicos/administração & dosagem , Comunicação Celular , Conexina 43/antagonistas & inibidores , Conexina 43/química , Conexina 43/genética , Sistemas de Liberação de Medicamentos , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/genética , Junções Comunicantes/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Permeabilidade , Conformação Proteica , Transdução de Sinais , Relação Estrutura-Atividade
11.
MAbs ; 10(6): 843-853, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29944439

RESUMO

Here, we present the first case-study where microdialysis is used to investigate the pharmacokinetics of antibody in different regions of rat brain. Endogenous IgG was used to understand antibody disposition at steady-state and exogenously administered trastuzumab was used to understand the disposition in a dynamic setting. Microdialysis samples from the striatum (ST), lateral ventricle (LV), and cisterna magna (CM) were collected, along with plasma and brain homogenate, to comprehensively understand brain pharmacokinetics of antibodies. Antibody concentrations in cerebrospinal fluid (CSF) were found to vary based on the site-of-collection, where CM concentrations were several-fold higher than LV. In addition, antibody concentrations in CSF (CM/LV) were found to not accurately represent the concentrations of antibody inside brain parenchyma (e.g., ST). Elimination of CSF from CM was found to be slower than LV, and the entry and exit of antibody from ST was also slower. Pharmacokinetics of exogenously administered antibody revealed that the entry of antibody into LV via the blood-CSF barrier may represent an early pathway for antibody entry into the brain. Plasma concentrations of antibody were 247-667, 104-184, 165-435, and 377-909 fold higher than the antibody concentrations in LV, CM, ST, and brain homogenate. It was found that the measurement of antibody pharmacokinetics in different regions of the brain using microdialysis provides an unprecedented insight into brain disposition of antibody. This insight can help in designing better molecules, dosing regimens, and route of administration, which can in turn improve the efficacy of antibodies for central nervous system disorders.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Microdiálise/métodos , Trastuzumab/farmacocinética , Animais , Antineoplásicos Imunológicos/líquido cefalorraquidiano , Antineoplásicos Imunológicos/farmacocinética , Cisterna Magna/metabolismo , Corpo Estriado/metabolismo , Imunoglobulina G/metabolismo , Ventrículos Laterais/metabolismo , Masculino , Ratos Sprague-Dawley , Trastuzumab/líquido cefalorraquidiano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA