RESUMO
We aimed to determine the combined effects of overexpressing plasma membrane fatty acid binding protein (FABPpm) and fatty acid translocase (CD36) on skeletal muscle fatty acid transport to establish if these transport proteins function collaboratively. Electrotransfection with either FABPpm or CD36 increased their protein content at the plasma membrane (+75% and +64%), increased fatty acid transport rates by +24% for FABPpm and +62% for CD36, resulting in a calculated transport efficiency of â¼0.019 and â¼0.053 per unit protein change for FABPpm and CD36, respectively. We subsequently used these data to determine if increasing both proteins additively or synergistically increased fatty acid transport. Cotransfection of FABPpm and CD36 simultaneously increased protein content in whole muscle (FABPpm, +46%; CD36, +45%) and at the sarcolemma (FABPpm, +41%; CD36, +42%), as well as fatty acid transport rates (+50%). Since the relative effects of changing FABPpm and CD36 content had been independently determined, we were able to a predict a change in fatty acid transport based on the overexpression of plasmalemmal transporters in the cotransfection experiments. This prediction yielded an increase in fatty acid transport of +0.984 and +1.722 pmol/mg prot/15 s for FABPpm and CD36, respectively, for a total increase of +2.96 pmol/mg prot/15 s. This calculated determination was remarkably consistent with the measured change in transport, namely +2.89 pmol/mg prot/15 s. Altogether, these data indicate that increasing CD36 and FABPpm alters fatty acid transport rates additively, but not synergistically, suggesting an independent mechanism of action within muscle for each transporter. This conclusion was further supported by the observation that plasmalemmal CD36 and FABPpm did not coimmunoprecipitate.
Assuntos
Proteínas de Ligação a Ácido Graxo , Ácidos Graxos , Transporte Biológico/fisiologia , Antígenos CD36/genética , Antígenos CD36/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Músculo Esquelético/metabolismo , Sarcolema/metabolismoRESUMO
Tre-2/USP6, BUB2, cdc16 domain family, member 1 (TBC1D1), a Rab-GTPase activating protein, is a paralogue of AS160, and has been implicated in the canonical insulin-signaling cascade in peripheral tissues. More recently, TBC1D1 was identified in rat and human pancreatic islets; however, the islet function of TBC1D1 remains not fully understood. We examined the role of TBC1D1 in glucose homeostasis and insulin secretion utilizing a rat knockout (KO) model. Chow-fed TBC1D1 KO rats had improved insulin action but impaired glucose-tolerance tests (GTT) and a lower insulin response during an intraperitoneal GTT compared with wild-type (WT) rats. The in vivo data suggest there may be an islet defect. Glucose-stimulated insulin secretion was higher in isolated KO rat islets compared with WT animals, suggesting TBC1D1 is a negative regulator of insulin secretion. Moreover, KO rats displayed reduced ß-cell mass, which likely accounts for the impaired whole-body glucose homeostasis. This ß-cell mass reduction was associated with increased active caspase 3, and unaltered Ki67 or urocortin 3, suggesting the induction of apoptosis rather than decreased proliferation or dedifferentiation may account for the decline in islet mass. A similar phenotype was observed in TBC1D1 heterozygous animals, highlighting the sensitivity of the pancreas to subtle reductions in TBC1D1 protein. An 8-week pair-fed high-fat diet did not further alter ß-cell mass or apoptosis in KO rats, suggesting that dietary lipids per se, do not lead to a further impairment in glucose homeostasis. The present study establishes a fundamental role for TBC1D1 in maintaining in vivo ß-cell mass.
Assuntos
Glicemia/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Homeostase , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Proteínas/metabolismo , Animais , Apoptose , Caspase 3/genética , Caspase 3/metabolismo , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Intolerância à Glucose/genética , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Insulina/sangue , Insulina/metabolismo , Resistência à Insulina , Secreção de Insulina , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Masculino , Proteínas/genética , Ratos , Transdução de Sinais , Urocortinas/genética , Urocortinas/metabolismoRESUMO
Leptin stimulates fatty acid oxidation in muscle and heart; but, the mechanism by which these tissues provide additional intracellular fatty acids for their oxidation remains unknown. We examined, in isolated muscle and cardiac myocytes, whether leptin, via AMP-activated protein kinase (AMPK) activation, stimulated fatty acid translocase (FAT/CD36)-mediated fatty acid uptake to enhance fatty acid oxidation. In both mouse skeletal muscle and rat cardiomyocytes, leptin increased fatty acid oxidation, an effect that was blocked when AMPK phosphorylation was inhibited by adenine 9-ß-d-arabinofuranoside or Compound C. In wild-type mice, leptin induced the translocation of FAT/CD36 to the plasma membrane and increased fatty acid uptake into giant sarcolemmal vesicles and into cardiomyocytes. In muscles of FAT/CD36-KO mice, and in cardiomyocytes in which cell surface FAT/CD36 action was blocked by sulfo-N-succinimidyl oleate, the leptin-stimulated influx of fatty acids was inhibited; concomitantly, the normal leptin-stimulated increase in fatty acid oxidation was also prevented, despite the normal leptin-induced increase in AMPK phosphorylation. Conversely, in muscle of AMPK kinase-dead mice, leptin failed to induce the translocation of FAT/CD36, along with a failure to stimulate fatty acid uptake and oxidation. Similarly, when siRNA was used to reduce AMPK in HL-1 cardiomyocytes, leptin failed to induce the translocation of FAT/CD36. Our studies have revealed a novel mechanism of leptin-induced fatty acid oxidation in muscle tissue; namely, this process is dependent on the activation of AMPK to induce the translocation of FAT/CD36 to the plasma membrane, thereby stimulating fatty acid uptake. Without increasing this leptin-stimulated, FAT/CD36-dependent fatty acid uptake process, leptin-stimulated AMPK phosphorylation does not enhance fatty acid oxidation.
Assuntos
Antígenos CD36/metabolismo , Ácidos Graxos/metabolismo , Leptina/metabolismo , Músculo Esquelético/metabolismo , Miócitos Cardíacos/metabolismo , Sarcolema/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antígenos CD36/genética , Linhagem Celular , Ácidos Graxos/genética , Leptina/genética , Camundongos , Camundongos Knockout , Ácidos Oleicos/farmacologia , Oxirredução/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ratos , Sarcolema/genética , Succinimidas/farmacologia , Vidarabina/farmacologiaRESUMO
Myocardial uptake of long-chain fatty acids largely occurs by facilitated diffusion, involving primarily the membrane-associated protein CD36. Other putative fatty acid transporters, such as FABPpm, FATP1 and FATP4, also play a role, but their quantitative contribution is much smaller or their involvement is rather permissive. Besides its sarcolemmal localization, CD36 is also present in intracellular compartments (endosomes). CD36 cycles between both pools via vesicle-mediated trafficking, and the relative distribution between endosomes versus sarcolemma determines the rate of cardiac fatty acid uptake. A net translocation of CD36 to the sarcolemma is induced by various stimuli, in particular hormones like insulin and myocyte contractions, so as to allow a proper coordination of the rate of fatty acid uptake with rapid fluctuations in myocardial energy needs. Furthermore, changes in cardiac fatty acid utilization that occur in both acute and chronic cardiac disease appear to be accompanied by concomitant changes in the sarcolemmal presence of CD36. Studies in various animal and cell models suggest that interventions aimed at modulating the sarcolemmal presence or functioning of CD36 hold promise as therapy to rectify aberrant rates of fatty acid uptake in order to fight cardiac metabolic remodeling and restore proper contractile function. In this review we discuss our current knowledge about the role of CD36 in cardiac fatty acid uptake and metabolism in health and disease with focus on the regulation of the subcellular trafficking of CD36 and its selective modulation as therapeutic approach for cardiac disease. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Assuntos
Antígenos CD36/metabolismo , Ácidos Graxos/metabolismo , Miocárdio/metabolismo , Animais , Antígenos CD36/química , Humanos , Resistência à Insulina , Contração Miocárdica , Frações Subcelulares/metabolismoRESUMO
Changes in nuclear receptor interacting protein 140 (RIP140) influences mitochondrial content in skeletal muscle; however, the translation of these findings to the brain has not been investigated. The present study examined the impact of overexpressing and ablating RIP140 on mitochondrial content in muscle and the cortex through examining mRNA, mtDNA, and mitochondrial protein content. Our results show that changes in RIP140 expression significantly alters markers of mitochondrial content in skeletal muscle but not the brain.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Córtex Cerebral/metabolismo , Mitocôndrias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Proteínas Nucleares/genética , Proteína 1 de Interação com Receptor NuclearRESUMO
Muscle contains various fatty acid transporters (CD36, FABPpm, FATP1, FATP4). Physiological stimuli (insulin, contraction) induce the translocation of all four transporters to the sarcolemma to enhance fatty acid uptake similarly to glucose uptake stimulation via glucose transporter-4 (GLUT4) translocation. Akt2 mediates insulin-induced, but not contraction-induced, GLUT4 translocation, but its role in muscle fatty acid transporter translocation is unknown. In muscle from Akt2-knockout mice, we observed that Akt2 is critically involved in both insulin-induced and contraction-induced fatty acid transport and translocation of fatty acid translocase/CD36 (CD36) and FATP1, but not of translocation of fatty acid-binding protein (FABPpm) and FATP4. Instead, Akt2 mediates intracellular retention of both latter transporters. Collectively, our observations reveal novel complexities in signaling mechanisms regulating the translocation of fatty acid transporters in muscle.
Assuntos
Proteínas de Transporte de Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Músculos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Regulação Enzimológica da Expressão Gênica , Técnicas de Inativação de Genes , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Camundongos , Músculos/citologia , Fenótipo , Fosforilação , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/deficiência , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de SinaisRESUMO
AIMS/HYPOTHESIS: The mechanisms for diet-induced intramyocellular lipid accumulation and its association with insulin resistance remain contentious. In a detailed time-course study in rats, we examined whether a high-fat diet increased intramyocellular lipid accumulation via alterations in fatty acid translocase (FAT/CD36)-mediated fatty acid transport, selected enzymes and/or fatty acid oxidation, and whether intramyocellular lipid accretion coincided with the onset of insulin resistance. METHODS: We measured, daily (on days 1-7) and/or weekly (for 6 weeks), the diet-induced changes in circulating substrates, insulin, sarcolemmal substrate transporters and transport, selected enzymes, intramyocellular lipids, mitochondrial fatty acid oxidation and basal and insulin-stimulated sarcolemmal GLUT4 and glucose transport. We also examined whether upregulating fatty acid oxidation improved glucose transport in insulin-resistant muscles. Finally, in Cd36-knockout mice, we examined the role of FAT/CD36 in intramyocellular lipid accumulation, insulin sensitivity and diet-induced glucose intolerance. RESULTS: Within 2-3 days, diet-induced increases occurred in insulin, sarcolemmal FAT/CD36 (but not fatty acid binding protein [FABPpm] or fatty acid transporter [FATP]1 or 4), fatty acid transport and intramyocellular triacylglycerol, diacylglycerol and ceramide, independent of enzymatic changes or muscle fatty acid oxidation. Diet-induced increases in mitochondria and mitochondrial fatty acid oxidation and impairments in insulin-stimulated glucose transport and GLUT4 translocation occurred much later (≥21 days). FAT/CD36 ablation impaired insulin-stimulated fatty acid transport and lipid accumulation, improved insulin sensitivity and prevented diet-induced glucose intolerance. Increasing fatty acid oxidation in insulin-resistant muscles improved glucose transport. CONCLUSIONS/INTERPRETATIONS: High-fat feeding rapidly increases intramyocellular lipids (in 2-3 days) via insulin-mediated upregulation of sarcolemmal FAT/CD36 and fatty acid transport. The 16-19 day delay in the onset of insulin resistance suggests that additional mechanisms besides intramyocellular lipids contribute to this pathology.
Assuntos
Antígenos CD36/metabolismo , Ácidos Graxos/metabolismo , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/fisiologia , Células Musculares/metabolismo , Animais , Antígenos CD36/genética , Dieta Hiperlipídica , Proteínas de Ligação a Ácido Graxo/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Resistência à Insulina/genética , Metabolismo dos Lipídeos/genética , Masculino , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Ratos , Ratos Sprague-DawleyRESUMO
Exercise has been shown to induce the translocation of fatty acid translocase (FAT/CD36), a fatty acid transport protein, to both plasma and mitochondrial membranes. While previous studies have examined signals involved in the induction of FAT/CD36 translocation to sarcolemmal membranes, to date the signaling events responsible for FAT/CD36 accumulation on mitochondrial membranes have not been investigated. In the current study muscle contraction rapidly increased FAT/CD36 on plasma membranes (7.5 minutes), while in contrast, FAT/CD36 only increased on mitochondrial membranes after 22.5 minutes of muscle contraction, a response that was exercise-intensity dependent. Considering that previous research has shown that AMP activated protein kinase (AMPK) α2 is not required for FAT/CD36 translocation to the plasma membrane, we investigated whether AMPK α2 signaling is necessary for mitochondrial FAT/CD36 accumulation. Administration of 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) induced AMPK phosphorylation, and resulted in FAT/CD36 accumulation on SS mitochondria, suggesting AMPK signaling may mediate this response. However, SS mitochondrial FAT/CD36 increased following acute treadmill running in both wild-type (WT) and AMPKα 2 kinase dead (KD) mice. These data suggest that AMPK signaling is not required for SS mitochondrial FAT/CD36 accumulation. The current data also implicates alternative signaling pathways that are exercise-intensity dependent, as IMF mitochondrial FAT/CD36 content only occurred at a higher power output. Taken altogether the current data suggests that activation of AMPK signaling is sufficient but not required for exercise-induced accumulation in mitochondrial FAT/CD36.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antígenos CD36/metabolismo , Mitocôndrias/metabolismo , Condicionamento Físico Animal , Proteínas Quinases Ativadas por AMP/genética , Animais , Antígenos CD36/genética , Membrana Celular/metabolismo , Camundongos , Sarcolema/metabolismo , Transdução de Sinais/genéticaRESUMO
Endurance exercise relies on transsarcolemmal flux of substrates in order to avoid depletion of intramuscular reserves. Previous studies of endurance trained sled dogs have shown a remarkable capacity of these dogs to adapt rapidly to endurance exercise by decreasing the utilization of intramuscular reserves. The current study tested the hypothesis that the dogs' glycogen-sparing phenotype is due to increased sarcolemmal transport of glucose and fatty acids. Basal and exercise-induced transport of glucose and fatty acids into sarcolemmal vesicles was evaluated in racing sled dogs prior to and after 7 months of exercise conditioning. Sarcolemmal substrate transport capacity was measured using sarcolemmal vesicles and radiolabelled substrates, and transporter abundance was measured using Western blot quantification in whole muscle homogenates and the sarcolemmal vesicle preparations. Conditioning resulted in increased basal and exercise-induced transport of both glucose and palmitate. Neither acute exercise nor conditioning resulted in changes in muscle content of GLUT4 or FAT/CD36, but conditioning did result in decreased abundance of both transporters in the sarcolemmal vesicles used for the basal transport assays, and this decrease was further amplified in the vesicles used for the exercise-induced transport assays. These results demonstrate conditioning-induced increases in sarcolemmal transport of oxidizable substrates, as well as increased gain of exercise-induced sarcolemmal transport of these substrates. These results further indicate that increased sarcolemmal transport of oxidizable substrates may be due to either an increased intrinsic capacity of the existing transporters or to a different population of transporters from those investigated.
Assuntos
Contração Muscular , Condicionamento Físico Animal , Resistência Física , Sarcolema/metabolismo , Animais , Transporte Biológico , Antígenos CD36/metabolismo , Cães , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Proteínas Musculares/metabolismo , Palmitatos/metabolismoRESUMO
Activation of AMP-activated protein kinase (AMPK) in cardiomyocytes induces translocation of glucose transporter GLUT4 and long-chain fatty acid (LCFA) transporter CD36 from endosomal stores to the sarcolemma to enhance glucose and LCFA uptake, respectively. Ca(2+)/calmodulin-activated kinase kinase-ß (CaMKKß) has been positioned directly upstream of AMPK. However, it is unknown whether acute increases in [Ca(2+)]i stimulate translocation of GLUT4 and CD36 and uptake of glucose and LCFA or whether Ca(2+) signaling converges with AMPK signaling to exert these actions. Therefore, we studied the interplay between Ca(2+) and AMPK signaling in regulation of cardiomyocyte substrate uptake. Exposure of primary cardiomyocytes to inhibitors or activators of Ca(2+) signaling affected neither AMPK-Thr(172) phosphorylation nor basal and AMPK-mediated glucose and LCFA uptake. Despite their lack of an effect on substrate uptake, Ca(2+) signaling activators induced GLUT4 and CD36 translocation. In contrast, AMPK activators stimulated GLUT4/CD36 translocation as well as glucose/LCFA uptake. When cardiomyocytes were cotreated with Ca(2+) signaling and AMPK activators, Ca(2+) signaling activators further enhanced AMPK-induced glucose/LCFA uptake. In conclusion, Ca(2+) signaling shows no involvement in AMPK-induced GLUT4/CD36 translocation and substrate uptake but elicits transporter translocation via a separate pathway requiring CaMKKß/CaMKs. Ca(2+)-induced transporter translocation by itself appears to be ineffective to increase substrate uptake but requires additional AMPK activation to effectuate transporter translocation into increased substrate uptake. Ca(2+)-induced transporter translocation might be crucial under excessive cardiac stress conditions that require supraphysiological energy demands. Alternatively, Ca(2+) signaling might prepare the heart for substrate uptake during physiological contraction by inducing transporter translocation.
Assuntos
Antígenos CD36/metabolismo , Sinalização do Cálcio/fisiologia , Ácidos Graxos/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Glucose/metabolismo , Miócitos Cardíacos/metabolismo , Sarcolema/metabolismo , Animais , Calcimicina/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Miócitos Cardíacos/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Endogâmicos Lew , Sarcolema/efeitos dos fármacos , Tapsigargina/farmacologiaRESUMO
Calcium/calmodulin-dependent protein kinase (CaMK) activation induces mitochondrial biogenesis in response to increasing cytosolic calcium concentrations. Calcium leak from the ryanodine receptor (RyR) is regulated by reactive oxygen species (ROS), which is increased with high-fat feeding. We examined whether ROS-induced CaMKII-mediated signaling induced skeletal muscle mitochondrial biogenesis in selected models of lipid oversupply. In obese Zucker rats and high-fat-fed rodents, in which muscle mitochondrial content was upregulated, CaMKII phosphorylation was increased independent of changes in calcium uptake because sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) protein expression or activity was not altered, implicating altered sarcoplasmic reticulum (SR) calcium leak in the activation of CaMKII. In support of this, we found that high-fat feeding increased mitochondrial ROS emission and S-nitrosylation of the RyR, whereas hydrogen peroxide induced SR calcium leak from the RyR and activation of CaMKII. Moreover, administration of a mitochondrial-specific antioxidant, SkQ, prevented high-fat diet-induced phosphorylation of CaMKII and the induction of mitochondrial biogenesis. Altogether, these data suggest that increased mitochondrial ROS emission is required for the induction of SR calcium leak, activation of CaMKII, and induction of mitochondrial biogenesis in response to excess lipid availability.
Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Dieta Hiperlipídica , Mitocôndrias/metabolismo , Células Musculares/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Retículo Sarcoplasmático/fisiologia , Animais , Glicemia/metabolismo , Western Blotting , Sinalização do Cálcio/fisiologia , Proteínas de Ligação ao Cálcio , Ativação Enzimática , Peróxido de Hidrogênio/metabolismo , Masculino , Fosforilação , Ratos , Ratos Zucker , Trocador de Sódio e Cálcio/metabolismo , Regulação para CimaRESUMO
AIMS/HYPOTHESIS: Although insulin resistance has been associated with accumulations of specific intramuscular fatty acids and altered subcellular localisation of lipid droplets, these concepts remain controversial. Therefore, we aimed to identify specific intramuscular fatty acids and subcellular lipid localisations associated with improved insulin sensitivity following chronic muscle contraction. METHODS: In lean and insulin-resistant obese Zucker rats the tibialis anterior muscle was stimulated (6 h/day for 6 days). Thereafter, muscles were examined for insulin sensitivity, intramuscular lipid droplet localisation and triacylglycerol (TAG), diacylglycerol (DAG) and ceramide fatty acid composition. RESULTS: In lean and obese animals, regardless of muscle type, chronic muscle contraction improved muscle insulin sensitivity and increased intramuscular levels of total and most C14-C22 TAG fatty acids (p < 0.05). Therefore, accumulation in subcellular lipid droplet compartments reflected the oversupply of lipids within muscle. In contrast, improvements in insulin sensitivity induced by muscle contraction were associated with reductions in specific DAG and ceramide species that were not uniform in red and white muscle of obese rats. However, these reductions were insufficient to fully normalise insulin sensitivity, indicating that other mechanisms are involved. CONCLUSIONS/INTERPRETATION: Reductions in 18 C length DAG and ceramide species were the most consistent in red and white muscle and therefore may represent therapeutic targets for improving insulin sensitivity.
Assuntos
Ceramidas/metabolismo , Diglicerídeos/metabolismo , Insulina/farmacologia , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Animais , Feminino , Resistência à Insulina , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Ratos , Ratos Zucker , Triglicerídeos/metabolismoRESUMO
This study examined changes in the expression of translation initiation regulatory proteins and mRNA following both an acute bout of endurance exercise and chronic muscle contractile activity. Female Sprague Dawley rats ran for 2 h at 15 m·min(-1) followed by an increase in speed of 5 m·min(-1) every 5 min until volitional fatigue. The red gastrocnemius muscle was harvested from nonexercised animals (control; n = 6) and from animals that exercised either immediately after exercise (n = 6) or following 3 h of recovery from exercise (n = 6). Compared with control, ribosomal protein S6 (rpS6) mRNA was elevated (p < 0.05) at both 0 h (+32%) and 3 h (+47%). Both a catalytic subunit of eukaryotic initiation factor 2B (eIF2Bε) (+127%) and mammalian target of rapamycin (mTOR) mRNA (+44%) were increased at 3 h, compared with control. Phosphorylation of mTOR (+40%) and S6 kinase 1 (S6K1) (+266%) were increased immediately after exercise (p < 0.05). Female Sprague Dawley rats also underwent chronic stimulation of the peroneal nerve continuously for 7 days. The red gastrocnemius muscle was removed 24 h after cessation of the stimulation. Chronic muscle stimulation increased (p < 0.05) mTOR protein (+74%), rpS6 (+31%), and eukaryotic initiation factor 2α (+44%, p = 0.069), and this was accompanied by an increase in cytochrome c (+31%). Increased resting phosphorylation was observed for rpS6 (+51%) (p < 0.05) but not for mTOR or eukaryotic initiation factor 4E binding protein 1. These experiments demonstrate that both acute and chronic contractile activity up-regulate the mTOR pathway and mitochondrial content in murine skeletal muscle. This up-regulation of the mTOR pathway may increase translation efficiency and may also represent an important control point in exercise-mediated mitochondrial biogenesis.
Assuntos
Transdução de Sinais , Sirolimo , Animais , Contração Muscular , Músculo Esquelético/metabolismo , Fosforilação , Ratos , Ratos Sprague-DawleyRESUMO
OBJECTIVES: Recently, we have demonstrated that FA transport proteins are located within the t-tubule fraction of rodent muscle, and that insulin stimulation causes their translocation to this membrane fraction. Chronic relocation of the FA transport protein FAT/CD36 to the sarcolemma is observed in obese rodents and humans, and correlates with intramuscular lipid accumulation and insulin resistance. It is not known whether in an obese, insulin resistant state FA transporters also chronically relocate to the t-tubules. Furthermore, it is not known whether the insulin-stimulated translocation of the various FA transport proteins to the t-tubules is impaired in insulin resistance. METHODS: Sarcolemmal and t-tubule membrane fractions were isolated via differential centrifugation from muscles of lean and obese female Zucker rats during basal or insulin stimulated conditions. FA transport proteins were measured via western blot on both membrane fractions. RESULTS: Our results demonstrate that in muscle from insulin resistant Zucker rats, FAT/CD36, FABPpm and FATP1 are all increased on the t-tubules in the basal state (+72%, +120%, and +69%, respectively), potentially contributing to the accumulation of intramuscular lipids. Insulin failed to increase the content of the FA transport proteins on either the t-tubule or sarcolemma above the elevated basal levels, analogous to the well characterized impairment of insulin-stimulated GLUT4 translocation to both membrane domains in obesity. CONCLUSION: FA transport proteins chronically relocate to the t-tubule domain in insulin resistant muscle, potentially contributing to lipid accumulation. Further translocation of the FA transport proteins to this domain during insulin stimulation, however, is impaired.
Assuntos
Proteínas de Transporte de Ácido Graxo/metabolismo , Insulina/farmacologia , Músculos/metabolismo , Obesidade/metabolismo , Animais , Antígenos CD36/metabolismo , Feminino , Transportador de Glucose Tipo 4/metabolismo , Resistência à Insulina , Transporte Proteico , Ratos , Ratos Zucker , Sarcolema/metabolismoRESUMO
High-intensity interval training (HIIT) can increase mitochondrial volume in skeletal muscle. However, it is unclear whether HIIT alters the intrinsic capacity of mitochondrial fatty acid oxidation, or whether such changes are associated with changes in mitochondrial FAT/CD36, a regulator of fatty acid oxidation, or with reciprocal changes in the nuclear receptor coactivator (peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1α)) and the corepressor (receptor-interacting protein 140 (RIP140)). We examined whether HIIT alters fatty acid oxidation rates in the isolated subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria of red and white skeletal muscle and (or) induces changes in muscle PGC-1α and RIP140 proteins and mitochondrial FAT/CD36 protein content. Rats were divided into untrained or HIIT-trained groups. HIIT animals performed 10 bouts of 1-min high-intensity treadmill running (30-55 m·min(-1)), separated by 2 min of rest, for 5 days a week for 4 weeks. As expected, after the training period, HIIT increased mitochondrial enzymes (citrate synthase, COXIV, and ß-hydroxyacyl CoA dehydrogenase) in red and white muscle, indicating that muscle mitochondrial volume had increased. HIIT also increased the rates of palmitate oxidation in mitochondria of red (37% for SS and 19% for IMF) and white (36% for SS and 12% for IMF) muscle. No changes occurred in SS and IMF mitochondrial FAT/CD36 proteins, despite increasing FAT/CD36 at the whole-muscle level (27% for red and 22% for white). Concurrently, muscle PGC-1α protein was increased in red (22%) and white (16%) muscle, but RIP140 was not altered. These results indicate that increases in SS and IMF mitochondrial fatty acid oxidation induced by HIIT are accompanied by an increase in PGC-1α, but not RIP140 or FAT/CD36.
Assuntos
Mitocôndrias Musculares , Músculo Esquelético , Animais , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Oxirredução , RatosRESUMO
Regulation of skeletal muscle fatty acid oxidation (FAO) and adaptation to exercise training have long been thought to depend on delivery of fatty acids (FAs) to muscle, their diffusion into muscle, and muscle mitochondrial content and biochemical machinery. However, FA entry into muscle occurs via a regulatable, protein-mediated mechanism, involving several transport proteins. Among these CD36 is key. Muscle contraction and pharmacological agents induce CD36 to translocate to the cell surface, a response that regulates FA transport, and hence FAO. In exercising CD36 KO mice, exercise duration (-44%), and FA transport (-41%) and oxidation (-37%) are comparably impaired, while carbohydrate metabolism is augmented. In trained CD36 KO mice, training-induced upregulation of FAO is not observed, despite normal training-induced increases in mitochondrial density and enzymes. Transfecting CD36 into sedentary WT muscle (+41%), comparable to training-induced CD36 increases (+44%) in WT muscle, markedly upregulates FAO to rates observed in trained WT mice, but without any changes in mitochondrial density and enzymes. Evidently, in vivo CD36-mediated FA transport is key for muscle fuel selection and training-induced FAO upregulation, independent of mitochondrial adaptations. This CD36 molecular mechanism challenges the view that skeletal muscle FAO is solely regulated by muscle mitochondrial content and machinery.
Assuntos
Exercício Físico , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Oxirredução , Esforço Físico , Animais , Antígenos CD36/metabolismo , Humanos , Renovação Mitocondrial , Músculo Esquelético/fisiologiaRESUMO
Disruptions of ovarian function in women are associated with increased risk of metabolic disease due to dysregulation of peripheral glucose homeostasis in skeletal muscle. Our previous evidence suggests that alterations in skeletal muscle lipid metabolism coupled with altered mitochondrial function may also develop. The objective of this study was to use an integrative metabolic approach to identify potential areas of dysfunction that develop in skeletal muscle from ovariectomized (OVX) female mice compared with age-matched ovary-intact adult female mice (sham). The OVX mice exhibited significant increases in body weight, visceral, and inguinal fat mass compared with sham mice. OVX mice also had significant increases in skeletal muscle intramyocellular lipids (IMCL) compared with the sham animals, which corresponded to significant increases in the protein content of the fatty acid transporters CD36/FAT and FABPpm. A targeted metabolic profiling approach identified significantly lower levels of specific acyl carnitine species and various amino acids in skeletal muscle from OVX mice compared with the sham animals, suggesting a potential dysfunction in lipid and amino acid metabolism, respectively. Basal and maximal mitochondrial oxygen consumption rates were significantly impaired in skeletal muscle fibers from OVX mice compared with sham animals. Collectively, these data indicate that loss of ovarian function results in increased IMCL storage that is coupled with alterations in mitochondrial function and changes in the skeletal muscle metabolic profile.
Assuntos
Metabolismo Energético/fisiologia , Metabolismo dos Lipídeos/fisiologia , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Ovariectomia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Cardiac glucose utilization is regulated by reversible translocation of the glucose transporter GLUT4 from intracellular stores to the plasma membrane. During the onset of diet-induced insulin resistance, elevated lipid levels in the circulation interfere with insulin-stimulated GLUT4 translocation, leading to impaired glucose utilization. Recently, we identified vesicle-associated membrane protein (VAMP) 2 and 3 to be required for insulin- and contraction-stimulated GLUT4 translocation, respectively, in cardiomyocytes. Here, we investigated whether overexpression of VAMP2 and/or VAMP3 could protect insulin-stimulated GLUT4 translocation under conditions of insulin resistance. HL-1 atrial cardiomyocytes transiently overexpressing either VAMP2 or VAMP3 were cultured for 16 h with elevated concentrations of palmitate and insulin. Upon subsequent acute stimulation with insulin, we measured GLUT4 translocation, plasmalemmal presence of the fatty acid transporter CD36, and myocellular lipid accumulation. Overexpression of VAMP3, but not VAMP2, completely prevented lipid-induced inhibition of insulin-stimulated GLUT4 translocation. Furthermore, the plasmalemmal presence of CD36 and intracellular lipid levels remained normal in cells overexpressing VAMP3. However, insulin signaling was not retained, indicating an effect of VAMP3 overexpression downstream of PKB/Akt. Furthermore, we revealed that endogenous VAMP3 is bound by the contraction-activated protein kinase D (PKD), and contraction and VAMP3 overexpression protect insulin-stimulated GLUT4 translocation via a common mechanism. These observations indicate that PKD activates GLUT4 translocation via a VAMP3-dependent trafficking step, which pathway might be valuable to rescue constrained glucose utilization in the insulin-resistant heart.
Assuntos
Transportador de Glucose Tipo 4/metabolismo , Resistência à Insulina , Miócitos Cardíacos/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Proteína 3 Associada à Membrana da Vesícula/metabolismo , Animais , Antígenos CD36/metabolismo , Linhagem Celular , Gorduras na Dieta/farmacologia , Expressão Gênica , Cardiopatias/metabolismo , Cardiopatias/patologia , Insulina/farmacologia , Insulina/fisiologia , Metabolismo dos Lipídeos , Masculino , Camundongos , Contração Miocárdica , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Palmitatos/farmacologia , Proteína Quinase C/metabolismo , Transporte Proteico , Ratos , Ratos Endogâmicos Lew , Transdução de Sinais , Proteína 2 Associada à Membrana da Vesícula/genética , Proteína 3 Associada à Membrana da Vesícula/genéticaRESUMO
AIM: The signaling pathways involved in the regulation of cardiac GLUT4 translocation/glucose uptake and CD36 translocation/long-chain fatty acid uptake are not fully understood. We compared in heart/muscle-specific PKC-λ knockout mice the roles of atypical PKCs (PKC-ζ and PKC-λ) in regulating cardiac glucose and fatty acid uptake. RESULTS: Neither insulin-stimulated nor AMPK-mediated glucose and fatty acid uptake were inhibited upon genetic PKC-λ ablation in cardiomyocytes. In contrast, myristoylated PKC-ζ pseudosubstrate inhibited both insulin-stimulated and AMPK-mediated glucose and fatty acid uptake by >80% in both wild-type and PKC-λ-knockout cardiomyocytes. In PKC-λ knockout cardiomyocytes, PKC-ζ is the sole remaining atypical PKC isoform, and its expression level is not different from wild-type cardiomyocytes, in which it contributes to 29% and 17% of total atypical PKC expression and phosphorylation, respectively. CONCLUSION: Taken together, atypical PKCs are necessary for insulin-stimulated and AMPK-mediated glucose uptake into the heart, as well as for insulin-stimulated and AMPK-mediated fatty acid uptake. However, the residual PKC-ζ activity in PKC-λ-knockout cardiomyocytes is sufficient to allow optimal stimulation of glucose and fatty acid uptake, indicating that atypical PKCs are necessary but not rate-limiting in the regulation of cardiac substrate uptake and that PKC-λ and PKC-ζ have interchangeable functions in these processes.
RESUMO
Insulin-, and contraction-induced GLUT4 and fatty acid (FA) transporter translocation may share common trafficking mechanisms. Our objective was to examine the effects of partial Munc18c ablation on muscle glucose and FA transport, FA oxidation, GLUT4 and FA transporter (FAT/CD36, FABPpm, FATP1, FATP4) trafficking to the sarcolemma, and FAT/CD36 to mitochondria. In Munc18c(-/+) mice, insulin-stimulated glucose transport and GLUT4 sarcolemmal appearance were impaired, but were unaffected by contraction. Insulin- and contraction-stimulated FA transport, sarcolemmal FA transporter appearance, and contraction-mediated mitochondrial FAT/CD36 were increased normally in Munc18c(-/+) mice. Hence, Munc18c provides stimulus-specific regulation of GLUT4 trafficking, but not FA transporter trafficking.