Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Environ Manage ; 358: 120784, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38603847

RESUMO

Nowadays, biomarkers are recognized as valuable tools to complement chemical and ecological assessments in biomonitoring programs. They provide insights into the effects of contaminant exposures on individuals and establish connections between environmental pressure and biological response at higher levels. In the last decade, strong improvements in the design of experimental protocols and the result interpretation facilitated the use of biomarker across wide geographical areas, including aquatic continua. Notably, the statistical establishment of reference values and thresholds enabled the discrimination of contamination effects in environmental conditions, allowed interspecies comparisons, and eliminated the need of a reference site. The aim of this work was to study freshwater-estuarine-coastal water continua by applying biomarker measurements in multi-species caged organisms. During two campaigns, eight sentinel species, encompassing fish, mollusks, and crustaceans, were deployed to cover 25 sites from rivers to the sea. As much as possible, a common methodology was employed for biomarker measurements (DNA damage and phagocytosis efficiency) and data interpretation based on guidelines established using reference values and induction/inhibition thresholds (establishment of three effect levels). The methodology was successfully implemented and allowed us to assess the environmental quality. Employing multiple species per site enhances confidence in observed trends. The results highlight the feasibility of integrating biomarker-based environmental monitoring programs across a continuum scale. Biomarker results align with Water Framework Directive indicators in cases of poor site quality. Additionally, when discrepancies arise between chemical and ecological statuses, biomarker findings offer a comprehensive perspective to elucidate the disparities. Presented as a pilot project, this work contributes to gain insights into current biomonitoring needs, providing new questions and perspectives.


Assuntos
Biomarcadores , Monitoramento Ambiental , Espécies Sentinelas , Monitoramento Ambiental/métodos , Biomarcadores/análise , França , Animais , Peixes
2.
Harmful Algae ; 132: 102582, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38331546

RESUMO

Benthic cyanobacterial mats (BCMs) are becoming increasingly abundant on coral reefs worldwide. High growth rates and prolific toxin production give them the potential to cause widespread coral recruitment failure through allelopathic effects, but few studies have made the link between their toxicity for coral larvae and in situ toxin concentrations. Here we investigated the allelopathic effects of the benthic cyanobacterium Anabaena sp.1 on larvae of the coral Pocillopora acuta. This cyanobacterium produces several non-ribosomal cyclic lipopeptides of the laxaphycin family with cytotoxic properties. Therefore, we measured the concentration of laxaphycins A and B in Anabaena mats and in the water column and tested their effects on coral larvae. We found that Anabaena crude extract reduces both larval survivorship and settlement and that laxaphycin B reduces settlement. When larvae were exposed to both laxaphycins, there was a reduction in both larval survival and settlement. In the natural reef environment, laxaphycin A and B concentrations increased with increasing proximity to Anabaena mats, with concentrations being consistently above LC50 and EC50 thresholds within a 1 cm distance of the mats. This study demonstrates that laxaphycins reduce the survival and inhibit the settlement of coral larvae at concentrations found near Anabaena mats in situ. It further shows a combined effect between two cyanobacterial metabolites. As BCMs become more common, more of their secondary metabolites might be released in the water column. Their occurrence will lead to a reduction in coral recruitment rates, contributing to the continuing decline of coral reefs and shift in community structure.


Assuntos
Antozoários , Cianobactérias , Animais , Larva , Recifes de Corais , Água
3.
Environ Pollut ; 344: 123420, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272165

RESUMO

The detection all pathogenic enteric viruses in water is expensive, time-consuming, and limited by numerous technical difficulties. Consequently, using reliable indicators such as F-specific RNA phages (FRNAPH) can be well adapted to assess the risk of viral contamination of fecal origin in surface waters. However, the variability of results inherent to the water matrix makes it difficult to use them routinely and to interpret viral risk. Spatial and temporal variability of surface waters can lead to underestimate this risk, in particular in the case of low loading. The use of bivalve mollusks as accumulating systems appears as a promising alternative, as recently highlighted with the freshwater mussel Dreissena polymorpha, but its capacity to accumulate and depurate FRNAPH needs to be better understood and described. The purpose of this study is to characterise the kinetics of accumulation and elimination of infectious FRNAPH by D. polymorpha in laboratory conditions, formalised by a toxico-kinetic (TK) mechanistic model. Accumulation and depuration experiments were performed at a laboratory scale to determine the relationship between the concentration of infectious FRNAPH in water and the concentration accumulated by D. polymorpha. The mussels accumulated infectious FRNAPH (3-5.4 × 104 PFU/g) in a fast and concentration-dependent way in only 48 h, as already recently demonstrated. The second exposure demonstrated that the kinetics of infectious FRNAPH depuration by D. polymorpha was independent to the exposure dose, with a T90 (time required to depurate 90 % of the accumulated concentration) of approximately 6 days. These results highlight the capacities of D. polymorpha to detect and reflect the viral pollution in an integrative way and over time, which is not possible with point water sampling. Different TK models were fitted based on the concentrations measured in the digestive tissues (DT) of D. polymorpha. The model has been developed to formalise the kinetics of phage accumulation in mussels tissues through the simultaneous estimation of accumulation and depuration rates. This model showed that accumulation depended on the exposure concentration, while depuration did not. Standardized D. polymorpha could be easily transplanted to the environment to predict viral concentrations using the TK model defined in the present study to predict the level of contamination of bodies of water on the basis of the level of phages accumulated by the organisms. It will be also provide a better understanding of the dynamics of the virus in continental waters at different time and spatial scales, and thereby contribute to the protection of freshwater resources.


Assuntos
Bivalves , Dreissena , Animais , Toxicocinética , Água Doce/química , Água
4.
Sci Data ; 10(1): 643, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735452

RESUMO

Proteogenomic methodologies have enabled the identification of protein sequences in wild species without annotated genomes, shedding light on molecular mechanisms affected by pollution. However, proteomic resources for sentinel species are limited, and organ-level investigations are necessary to expand our understanding of their molecular biology. This study presents proteomic resources obtained from proteogenomic analyses of key organs (hepatopancreas, gills, hemolymph) from three established aquatic sentinel invertebrate species of interest in ecotoxicological/ecological research and environmental monitoring: Gammarus fossarum, Dreissena polymorpha, and Palaemon serratus. Proteogenomic analyses identified thousands of proteins for each species, with over 90% of them being annotated to putative function. Functional analysis validated the relevance of the proteomic atlases by revealing similarities in functional annotation of catalogues of proteins across analogous organs in the three species, while deep contrasts between functional profiles are delimited across different organs in the same organism. These organ-level proteomic atlases are crucial for future research on these sentinel animals, aiding in the evaluation of aquatic environmental risks and providing a valuable resource for ecotoxicological studies.


Assuntos
Invertebrados , Proteogenômica , Animais , Sequência de Aminoácidos , Proteômica , Espécies Sentinelas
5.
Sci Total Environ ; 897: 165379, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37423277

RESUMO

Dreissena polymorpha is a bivalve promising for biomonitoring in freshwater ecosystems thanks to its abundance and high filtration activity allowing rapid uptake of toxicants and identification of their negative effects. Nonetheless, we still lack knowledge on its molecular responses to stress under realistic scenario, e.g. multi-contamination. Carbamazepine (CBZ) and Hg are ubiquitous pollutants sharing molecular toxicity pathways, e.g. oxidative stress. A previous study in zebra mussels showed their co-exposure to cause more alterations than single exposures, but molecular toxicity pathways remained unidentified. D. polymorpha was exposed 24 h (T24) and 72 h (T72) to CBZ (6.1 ± 0.1 µg L-1), MeHg (430 ± 10 ng L-1) and the co-exposure (6.1 ± 0.1 µg L-1CBZ and 500 ± 10 ng L-1 MeHg) at concentrations representative of polluted areas (~10× EQS). RedOx system at the gene and enzyme level, the proteome and the metabolome were compared. The co-exposure resulted in 108 differential abundant proteins (DAPs), as well as 9 and 10 modulated metabolites at T24 and T72, respectively. The co-exposure specifically modulated DAPs and metabolites involved in neurotransmission, e.g. dopaminergic synapse and GABA. CBZ specifically modulated 46 DAPs involved in calcium signaling pathways and 7 amino acids at T24. MeHg specifically modulated 55 DAPs involved in the cytoskeleton remodeling and hypoxia-induced factor 1 pathway, without altering the metabolome. Single and co-exposures commonly modulated proteins and metabolites involved in energy and amino acid metabolisms, response to stress and development. Concomitantly, lipid peroxidation and antioxidant activities were unchanged, supporting that D. polymorpha tolerated experimental conditions. The co-exposure was confirmed to cause more alterations than single exposures. This was attributed to the combined toxicity of CBZ and MeHg. Altogether, this study underlined the necessity to better characterize molecular toxicity pathways of multi-contamination that are not predictable on responses to single exposures, to better anticipate adverse effects in biota and improve risk assessment.


Assuntos
Dreissena , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Masculino , Compostos de Metilmercúrio/toxicidade , Compostos de Metilmercúrio/metabolismo , Bioacumulação , Ecossistema , Carbamazepina/toxicidade , Carbamazepina/metabolismo , Poluentes Químicos da Água/análise
6.
J Environ Manage ; 341: 118049, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182402

RESUMO

The Integrated Biomarker Response (IBR) is one of the most used index in biomonitoring, especially the IBRv2 integrating a reference condition. However, some limitations remain for its routine and large-scale use. The IBRv2 is proportional to the total number of biomarkers, is dependent on the nature of biomarkers and considers all biomarkers modulations, even small and biologically non-significant. In addition, IBRv2 relies on reference values but the references are often different between each study, making it difficult to compare results between studies and/or campaigns. To overcome these limitations, the present work proposed a new index called IBR-T ("Integrated Biomarker Response - Threshold") which considers the threshold values of biomarkers by limiting the calculation of the IBR value to biomarkers with significant modulations. The IBRv2 and the IBR-T were calculated and compared on four datasets from active biomonitoring campaigns using Dreissena polymorpha, a bivalve widely used in freshwater biomonitoring studies. The comparison between indices has demonstrated that the IBR-T presents a better correlation (0.907 < r2 < 0.998) with the percentage of biomarkers significantly modulated than the IBRv2 (0.002 < r2 < 0.759). The IBRv2 could not be equal to 0 (0.915 < intercept <1.694) because the value was dependent on the total number of biomarkers, whereas the IBR-T reached 0 when no biomarker was significantly modulated, which appears more biologically relevant. The final ranking of sites was different between the two index and the IBR-T ranking tends to be more ecologically relevant that the IBRv2 ranking. This IBR-T have shown an undeniable interest for biomonitoring and could be used by environmental managers to simplify the interpretation of large datasets, directly interpret the contamination status of the site, use it to decision-making, and finally to easily communicate the results of biomonitoring studies to the general public.


Assuntos
Dreissena , Poluentes Químicos da Água , Animais , Monitoramento Ambiental/métodos , Biomarcadores , Dreissena/fisiologia , Água Doce , Valores de Referência , Poluentes Químicos da Água/análise
7.
Chemosphere ; 312(Pt 1): 137153, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36370762

RESUMO

Mollusks are very sensitive to aquatic environmental alterations and then, are important bio-indicators for monitoring the contamination of water bodies. Iodinated X-ray contrast media (ICMs) are ubiquitously present in the aquatic environment, primarily due to their high consumption for diagnosis purposes, high injection levels, low biodegradability, and low removal rates by wastewater treatment plants. Although these compounds are assumed to be of low toxicity, aquatic organisms are continuously exposed to these agents, which may result in adverse effects as ICMs can act as iodine source and disrupt the endocrine system. Thus, the evaluation of their environmental risk, especially on aquatic fauna is of great interest. To this end, we first compared the accumulation behavior, based on iodine analysis, of two ICM exhibiting different osmolality, diatrizoic acid and iohexol in Dreissena polymorpha bivalves exposed under laboratory conditions at concentrations of 0, 100, and 1000 µg/L during 4 and 7 days. This study was the first to provide information on iodine concentration in whole soft tissues and several organs in control zebra mussels. Moreover, it showed, after exposure, an increase of iodine content mainly in the digestive glands, followed by gills and gonads, highlighting that ICMs actually enter the organisms. Thus, bioaccumulation of ICMs studies were then performed, by liquid chromatography coupled to tandem mass spectrometry, on entire mollusks and digestive glands of organisms exposed at 0, 10, 100, and 1000 µg/L of both ICMs during 21 days, followed by 4 days of depuration. These first data on ICMs concentrations in zebra mussels, showed a clear accumulation of ICMs in mussels as a function of relative exposure level, as well as a rapid depuration. Osmolality did not seem to have a significant impact on the accumulation level, but a slight difference was observed on the accumulation pattern between both ICMs.


Assuntos
Bivalves , Dreissena , Compostos de Iodo , Iodo , Poluentes Químicos da Água , Animais , Iohexol/análise , Diatrizoato/análise , Meios de Contraste/toxicidade , Meios de Contraste/análise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
8.
Sci Total Environ ; 838(Pt 1): 155912, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35588819

RESUMO

The complex mixtures of contaminants released in wastewater treatment plant (WWTP) effluents are a major source of pollution for aquatic ecosystems. The present work aimed to assess the environmental risk posed by WWTP effluents by applying a multi-biomarker approach on caged rainbow trout (Oncorhynchus mykiss) juveniles. Fish were caged upstream and downstream of a WWTP for 21 days. To evaluate fish health, biomarkers representing immune, reproductive, nervous, detoxification, and antioxidant functions were assayed. Biomarker responses were then synthesized using an Integrated Biomarker Response (IBR) index. The IBR highlighted similar response patterns for the upstream and downstream sites. Caged juvenile females showed increased activities of innate immune parameters (lysozyme and complement), histological lesions and reduced glycogen content in the hepatic tissue, and higher muscle cholinergic metabolism. However, the intensity of the observed effects was more severe downstream of the WWTP. The present results suggest that the constitutive pollution level of the Meuse River measured upstream from the studied WWTP can have deleterious effects on fish health condition, which are exacerbated by the exposure to WWTP effluents. Our results infer that the application of IBR index is a promising tool to apply with active biomonitoring approaches as it provides comprehensive information about the biological effects caused by point source pollution such as WWTP, but also by the constitutive pollutions levels encountered in the receiving environment.


Assuntos
Oncorhynchus mykiss , Poluentes Químicos da Água , Purificação da Água , Animais , Monitoramento Biológico , Biomarcadores/metabolismo , Ecossistema , Monitoramento Ambiental/métodos , Feminino , Oncorhynchus mykiss/metabolismo , Águas Residuárias/análise , Águas Residuárias/toxicidade , Poluentes Químicos da Água/análise
9.
Environ Pollut ; 300: 118933, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35122922

RESUMO

Carbamazepine (CBZ) and Hg are widespread and persistent micropollutants in aquatic environments. Both pollutants are known to trigger similar toxicity mechanisms, e.g. reactive oxygen species (ROS) production. Here, their effects were assessed in the zebra mussel Dreissena polymorpha, frequently used as a freshwater model in ecotoxicology and biomonitoring. Single and co-exposures to CBZ (3.9 µg L-1) and MeHg (280 ng L-1) were performed for 1 and 7 days. Metabolomics analyses evidenced that the co-exposure was the most disturbing after 7 days, reducing the amount of 25 metabolites involved in protein synthesis, energy metabolism, antioxidant response and osmoregulation, and significantly altering cells and organelles' structure supporting a reduction of functions of gills and digestive glands. CBZ alone after 7 days decreased the amount of α-aminobutyric acid and had a moderate effect on the structure of mitochondria in digestive glands. MeHg alone had no effect on mussels' metabolome, but caused a significant alteration of cells and organelles' structure in gills and digestive glands. Single exposures and the co-exposure increased antioxidant responses vs control in gills and digestive glands, without resulting in lipid peroxidation, suggesting an increased ROS production caused by both pollutants. Data globally supported that a higher number of hyperactive cells compensated cellular alterations in the digestive gland of mussels exposed to CBZ or MeHg alone, while CBZ + MeHg co-exposure overwhelmed this compensation after 7 days. Those effects were unpredictable based on cellular responses to CBZ and MeHg alone, highlighting the need to consider molecular toxicity pathways for a better anticipation of effects of pollutants in biota in complex environmental conditions.


Assuntos
Dreissena , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Carbamazepina/análise , Carbamazepina/toxicidade , Dreissena/metabolismo , Brânquias/metabolismo , Compostos de Metilmercúrio/metabolismo , Compostos de Metilmercúrio/toxicidade , Poluentes Químicos da Água/análise
10.
Sci Total Environ ; 808: 152148, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34864038

RESUMO

A biomonitoring approach based on a single model species cannot be representative of the contaminations impacts on the ecosystem overall. As part of the Interreg DIADeM program ("Development of an integrated approach for the diagnosis of the water quality of the River Meuse"), a study was conducted to establish the proof of concept that the use of a multispecies active biomonitoring approach improves diagnostic of aquatic systems. The complementarity of the biomarker responses was tested in four model species belonging to various ecological compartments: the bryophyte Fontinalis antipyretica, the bivalve Dreissena polymorpha, the amphipod Gammarus fossarum and the fish Gasterosteus aculeatus. The species have been caged upstream and downstream from five wastewater treatment plants (WWTPs) in the Meuse watershed. After the exposure, a battery of biomarkers was measured and results were compiled in an Integrated Biomarker Response (IBR) for each species. A multispecies IBR value was then proposed to assess the quality of the receiving environment upstream the WWTPs. The effluent toxicity was variable according to the caged species and the WWTP. However, the calculated IBR were high for all species and upstream sites, suggesting that the water quality was already downgraded upstream the WWTP. This contamination of the receiving environment was confirmed by the multispecies IBR which has allowed to rank the rivers from the less to the most contaminated. This study has demonstrated the interest of the IBR in the assessment of biological impacts of a point-source contamination (WWTP effluent) but also of the receiving environment, thanks to the use of independent references. Moreover, this study has highlighted the complementarity between the different species and has emphasized the interest of this multispecies approach to consider the variability of the species exposition pathway and sensibility as well as the mechanism of contaminants toxicity in the final diagnosis.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Animais , Monitoramento Biológico , Ecossistema , Rios , Águas Residuárias , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
11.
J Appl Microbiol ; 132(1): 736-746, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34152060

RESUMO

AIMS: The protozoan parasites Cryptosporidium spp., Giardia duodenalis and Toxoplasma gondii are identified as public health priorities and are present in a wide variety of environments including the marine ecosystem. The objective of this study was to demonstrate that the marine bivalve blue mussel (Mytilus edulis) can be used as a tool to monitor the contamination of marine waters by the three protozoa over time. METHODS AND RESULTS: In order to achieve a proof of concept, mussels were exposed to three concentrations of G. duodenalis cysts and Cryptosporidium parvum/T. gondii oocysts for 21 days, followed by 21 days of depuration in clear water. Then, natural contamination by these protozoa was sought for in wild marine blue mussels along the northwest coast of France to validate their relevance as bioindicators in the field. Our results highlighted that: (a) blue mussels bioaccumulated the parasites for 21 days, according to the conditions of exposure, and parasites could still be detected during the depuration period (until 21 days); (b) the percentage of protozoa-positive M. edulis varied under the degree of protozoan contamination in water; (c) mussel samples from eight out of nine in situ sites were positive for at least one of the protozoa. CONCLUSIONS: The blue mussel M. edulis can bioaccumulate protozoan parasites over long time periods, according to the degree of contamination of waters they are inhabiting, and can highlight recent but also past contaminations (at least 21 days). SIGNIFICANCE AND IMPACT OF THE STUDY: Mytilus edulis is a relevant bioaccumulators of protozoan (oo)cysts in laboratory and field conditions, hence its potential use for monitoring parasite contamination in marine waters.


Assuntos
Criptosporidiose , Cryptosporidium , Mytilus edulis , Animais , Ecossistema , Biomarcadores Ambientais , Laboratórios , Água
12.
Mar Drugs ; 19(9)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34564135

RESUMO

Lipopeptides are a class of compounds generally produced by microorganisms through hybrid biosynthetic pathways involving non-ribosomal peptide synthase and a polyketyl synthase. Cyanobacterial-produced laxaphycins are examples of this family of compounds that have expanded over the past three decades. These compounds benefit from technological advances helping in their synthesis and characterization, as well as in deciphering their biosynthesis. The present article attempts to summarize most of the articles that have been published on laxaphycins. The current knowledge on the ecological role of these complex sets of compounds will also be examined.


Assuntos
Peptídeos Cíclicos , História do Século XX , História do Século XXI , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/química , Peptídeos Cíclicos/história , Peptídeos Cíclicos/farmacologia
13.
Sci Rep ; 11(1): 14610, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272460

RESUMO

The resilience of coral reefs is dependent on the ability of corals to settle after disturbances. While crustose coralline algae (CCA) are considered important substrates for coral settlement, it remains unclear whether coral larvae respond to CCA metabolites and microbial cues when selecting sites for attachment and metamorphosis. This study tested the settlement preferences of an abundant coral species (Acropora cytherea) against six different CCA species from three habitats (exposed, subcryptic and cryptic), and compared these preferences with the metabolome and microbiome characterizing the CCA. While all CCA species induced settlement, only one species (Titanoderma prototypum) significantly promoted settlement on the CCA surface, rather than on nearby dead coral or plastic surfaces. This species had a very distinct bacterial community and metabolomic fingerprint. Furthermore, coral settlement rates and the CCA microbiome and metabolome were specific to the CCA preferred habitat, suggesting that microbes and/or chemicals serve as environmental indicators for coral larvae. Several amplicon sequence variants and two lipid classes-glycoglycerolipids and betaine lipids-present in T. prototypum were identified as potential omic cues influencing coral settlement. These results support that the distinct microbiome and metabolome of T. prototypum may promote the settlement and attachment of coral larvae.


Assuntos
Antozoários/fisiologia , Bactérias/classificação , Bactérias/metabolismo , Larva/fisiologia , Metaboloma , Microbiota , Rodófitas/microbiologia , Animais , Técnicas de Tipagem Bacteriana , Recifes de Corais , DNA Bacteriano , Ecologia , Ecossistema , Biologia Marinha , Metamorfose Biológica , RNA Ribossômico 16S , Rodófitas/metabolismo
14.
J Med Chem ; 64(9): 6198-6208, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33914531

RESUMO

In the marine environment, sessile cyanobacteria have developed chemical strategies for protection against grazers. In turn, herbivores have to circumvent these defenses and in certain cases even take advantage of them as shelter from their own predators. This is the case of Stylocheilus striatus, a sea hare that feeds on Anabaena torulosa, a cyanobacterium that produces toxic cyclic lipopeptides of the laxaphycin B family. S. striatus consumes the cyanobacterium without being affected by the toxicity of its compounds and also uses it as an invisibility cloak against predators. In this article, using different substrates analogous to laxaphycin B, we demonstrate the presence of an enzyme in the digestive gland of the mollusk that is able to biotransform laxaphycin B derivatives. The enzyme belongs to the poorly known family of d-peptidases that are suspected to be involved in antibiotic resistance.


Assuntos
Farmacorresistência Bacteriana/efeitos dos fármacos , Moluscos/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeos Cíclicos/metabolismo , Animais , Peptídeos Cíclicos/química , Peptídeos Cíclicos/toxicidade
15.
Aquat Toxicol ; 230: 105699, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33290890

RESUMO

Metal trace elements such as cadmium (Cd) are commonly present in ecosystems and could lead to impairment of mitochondrial functions and energy imbalance in aquatic organisms including molluscs. Combined exposure to increasing temperatures and Cd could enhance such an impact on animals. Seasonal fluctuations, such as temperature, and the corresponding reproduction cycle can affect biomarker responses. However, the reproduction cycle stage is rarely taken into account in ecotoxicological studies. Thus, this work aimed at understanding energy metabolism responses in a sentinel species, Dreissena polymorpha. Mussels were collected during the rest and the reproduction periods and were exposed to 10 µg.L-1 of cadmium (Cd) at two temperatures (in situ temperature and in situ temperature + 5°C) during 7 days. Energy metabolism was monitored by measuring reserves and energy nucleotides charge and by assessing aerobic and anaerobic metabolism markers, and upstream regulation pathways. Markers related to OXPHOS activity revealed seasonal variations under laboratory conditions. Conversely, adenylate nucleotides, glycogen, lipid and transcript levels of AMP-activated protein kinase, citrate synthase, ATP synthase and cytochrome b encoding genes remained steady after the acclimation period. No evident effect of Cd on energy metabolism markers was noticed for both exposures although the transcript level of succinate dehydrogenase and citrate synthase encoding genes decreased with Cd during the rest period. Cellular stress, revealed by lipid peroxidation and catalase mRNA levels, only occurred in Cd and warming co-exposed mussels during the reproduction period. These results suggest that contaminant impact might differ according to the reproduction cycle stage. The effect of confounding factors on biomarker variations should be further investigated to have a deeper knowledge of metabolism responses under laboratory conditions.


Assuntos
Monitoramento Biológico/métodos , Cádmio/toxicidade , Dreissena/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Espécies Sentinelas/crescimento & desenvolvimento , Poluentes Químicos da Água/toxicidade , Aerobiose , Anaerobiose , Animais , Biomarcadores/metabolismo , Dreissena/crescimento & desenvolvimento , Dreissena/metabolismo , Ecossistema , Ecotoxicologia , Modelos Teóricos , Reprodução/efeitos dos fármacos , Estações do Ano , Espécies Sentinelas/metabolismo
16.
Environ Pollut ; 270: 116048, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33190982

RESUMO

Biomonitoring of aquatic environments requires new tools to characterize the effects of pollutants on living organisms. Zebra mussels (Dreissena polymorpha) from the same site in north-eastern France were caged for two months, upstream and downstream of three wastewater treatment plants (WWTPs) in the international watershed of the Meuse (Charleville-Mézières "CM" in France, Namur "Nam" and Charleroi "Cr" in Belgium). The aim was to test 1H-NMR metabolomics for the assessment of water bodies' quality. The metabolomic approach was combined with a more "classical" one, i.e., the measurement of a range of energy biomarkers: lactate dehydrogenase (LDH), lipase, acid phosphatase (ACP) and amylase activities, condition index (CI), total reserves, electron transport system (ETS) activity and cellular energy allocation (CEA). Five of the eight energy biomarkers were significantly impacted (LDH, ACP, lipase, total reserves and ETS), without a clear pattern between sites (Up and Down) and stations (CM, Nam and Cr). The metabolomic approach revealed variations among the three stations, and also between the upstream and downstream of Nam and CM WWTPs. A total of 28 known metabolites was detected, among which four (lactate, glycine, maltose and glutamate) explained the observed metabolome variations between sites and stations, in accordance with chemical exposure levels. Metabolome changes suggest that zebra mussel exposure to field contamination could alter their osmoregulation and anaerobic metabolism capacities. This study reveals that lactate is a potential biomarker of interest, and 1H-NMR metabolomics can be an efficient approach to assess the health status of zebra mussels in the biomonitoring of aquatic environments.


Assuntos
Dreissena , Poluentes Químicos da Água , Animais , Bélgica , Monitoramento Ambiental , França , Metabolômica , Espectroscopia de Prótons por Ressonância Magnética , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
17.
Mar Drugs ; 18(7)2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679743

RESUMO

Laxaphycins are a family of non-ribosomal lipopeptides that have been isolated from several cyanobacteria. Some of these compounds have presented cytotoxic activities, but their mechanism of action is poorly understood. In this work, the already described laxaphycins B and B3, and acyclolaxaphycins B and B3 were isolated from the marine cyanobacteria Anabaena torulosa. Moreover, two new acyclic compounds, [des-(Ala4-Hle5)] acyclolaxaphycins B and B3, were purified from the herviborous gastropod Stylocheilus striatus, with this being the first description of biotransformed laxaphycins. The structure of these new compounds was elucidated, together with the absolute configuration of acyclolaxaphycins B and B3. The bioactivities of the six peptides were determined in SH-SY5Y human neuroblastoma cells. Laxaphycins B and B3 were cytotoxic (IC50: 1.8 and 0.8 µM, respectively) through the induction of apoptosis. In comparison, acyclic laxaphycins did not show cytotoxicity but affected mitochondrial functioning, so their effect on autophagy-related protein expression was analyzed, finding that acyclic peptides affected this process by increasing AMPK phosphorylation and inhibiting mTOR. This work confirms the pro-apoptotic properties of cyclic laxaphycins B and is the first report indicating the effects on autophagy of their acyclic analogs. Moreover, gastropod-derived compounds presented ring opening and amino-acids deletion, a biotransformation that had not been previously described.


Assuntos
Antineoplásicos/farmacologia , Neuroblastoma/tratamento farmacológico , Peptídeos Cíclicos/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Concentração Inibidora 50 , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Peptídeos Cíclicos/química , Fosforilação , Conformação Proteica , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/metabolismo
18.
Sci Rep ; 10(1): 9922, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32555283

RESUMO

Dimethylsulfoniopropionate (DMSP) is a key compound in the marine sulfur cycle, and is produced in large quantities in coral reefs. In addition to Symbiodiniaceae, corals and associated bacteria have recently been shown to play a role in DMSP metabolism. Numerous ecological studies have focused on DMSP concentrations in corals, which led to the hypothesis that increases in DMSP levels might be a general response to stress. Here we used multiple species assemblages of three common Indo-Pacific holobionts, the scleractinian corals Pocillopora damicornis and Acropora cytherea, and the giant clam Tridacna maxima and examined the DMSP concentrations associated with each species within different assemblages and thermal conditions. Results showed that the concentration of DMSP in A. cytherea and T. maxima is modulated according to the complexity of species assemblages. To determine the potential importance of symbiotic dinoflagellates in DMSP production, we then explored the relative abundance of Symbiodiniaceae clades in relation to DMSP levels using metabarcoding, and found no significant correlation between these factors. Finally, this study also revealed the existence of homologs involved in DMSP production in giant clams, suggesting for the first time that, like corals, they may also contribute to DMSP production. Taken together, our results demonstrated that corals and giant clams play important roles in the sulfur cycle. Because DMSP production varies in response to specific species-environment interactions, this study offers new perspectives for future global sulfur cycling research.


Assuntos
Antozoários/metabolismo , Bivalves/metabolismo , Recifes de Corais , Compostos de Sulfônio/metabolismo , Enxofre/metabolismo , Simbiose , Animais
19.
Sci Total Environ ; 725: 138450, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32298890

RESUMO

Aquatic organisms such as bivalves are particularly sensitive to seasonal fluctuations associated with climate changes. Energy metabolism management is also closely related to environmental fluctuations. Changes in both biotic and abiotic conditions, such as the reproduction status and temperature respectively, may affect the organism energy status. A bivalve sentinel species, Dreissena polymorpha was sampled along its one-year reproduction cycle in situ (2018-2019) to study natural modulations on several markers of energy metabolism regarding seasonal variations in situ. A panel of different processes involved in energy metabolism was monitored through different functions such as energy balance regulation, mitochondrial density, and aerobic/anaerobic metabolism. The typical schema expected was observed in a major part of measured responses. However, the monitored population of D. polymorpha showed signs of metabolism disturbances caused by an external stressor from April 2019. Targeting a major part of energy metabolism functions, a global analysis of responses suggested a putative impact on the mitochondrial respiratory chain due to potential pollution. This study highlighted also the particular relevance of in situ monitoring to investigate the impacts of environmental change on sentinel species.


Assuntos
Bivalves , Dreissena , Poluentes Químicos da Água/análise , Animais , Metabolismo Energético , Monitoramento Ambiental , Estações do Ano , Espécies Sentinelas
20.
Org Lett ; 22(1): 145-149, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31855439

RESUMO

The growing interest in marine natural substances as potential new drugs has made total synthesis a real asset for structure confirmation. Trichormamide C (1), a cyclic lipopeptide isolated from the cyanobacteria Oscillatoria sp., is characterized by the presence of nonproteinogenic amino acids in the sequence. Trichormamide C structural confirmation was carried out through the implementation of a flexible synthesis resulting in two new analogs (3 and 4).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA