Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(26): 47179-47198, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558653

RESUMO

Optical technologies are extremely competitive candidates to achieve very-high throughput links between ground and GEO satellites; however, their feasibility relies on the ability to mitigate channel impairments due to atmospheric turbulence. For that purpose, Adaptive Optics (AO) has already proved to be highly efficient on the downlink. However, for the uplink, anisoplanatism induced by point-ahead angle (PAA) compromises AO pre-compensation efficiency to an extent that depends on propagation conditions. The ability to properly assess the anisoplanatism impact in a wide variety of conditions is thus critical in designing the optical ground terminals. In this paper, we demonstrate the consistency of experimental coupled flux statistics with results coming from performance and end-to-end models, on an AO pre-compensated 13 km slant path in Tenerife. This validation is demonstrated in a wide variety of turbulence conditions, hence consolidating propagation channel models that are of critical importance for the reliability of future GEO feeder links. We then compare experimental results to theoretical on-sky performance, and discuss to what extent such slant path or horizontal path experiments can be representative of real GEO links.

2.
Biomed Opt Express ; 10(6): 2730-2743, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31259047

RESUMO

Image-based angiography is a well-adapted technique to characterize vasculature, and has been used in retinal neurovascular studies. Because the microvasculature is of particular interest, being the site of exchange between blood and tissue, a high spatio-temporal resolution is required, implying the use of adaptive optics ophthalmoscopes with a high frame rate. Creating the opportunity for decoupled stimulation and imaging of the retina makes the use of near infrared (NIR) imaging light desirable, while the need for a large field of view and a lack of distortion implies the use of a flood illumination-based setup. However, flood-illumination NIR video sequences of erythrocytes, or red blood cells (RBC), have a limited contrast compared to scanning systems and visible light. As a result, they cannot be processed via existing image-based angiography methods. We have therefore developed a new computational method relying on a spatio-temporal filtering of the sequence to isolate blood flow from noise in low-contrast sequences. Applying this computational approach enabled us to perform angiography with an adaptive optics flood illumination ophthalmoscope (AO-FIO) using NIR light, both in bright-field and dark-field modalities. Finally, we demonstrate the capabilities of our system to differentiate blood flow velocity on a retinal capillary network in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA