Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Talanta ; 204: 802-811, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31357367

RESUMO

Thermochemolysis of seven nucleobases-adenine, thymine, uracil, cytosine, guanine, xanthine, and hypoxanthine-in tetramethylammonium hydroxide (TMAH) was studied individually by pyrolysis gas chromatography mass spectrometry in the frame of the Mars surface exploration. The analyses were performed under conditions relevant to the Sample Analysis at Mars (SAM) instrument of the Mars Curiosity Rover and the Mars Organic Molecule Analyzer (MOMA) instrument of the ExoMars Rover. The thermochemolysis products of each nucleobase were identified and the reaction mechanisms studied. The thermochemolysis temperature was optimized and the limit of detection and quantification of each nucleobase were also investigated. Results indicate that 600°C is the optimal thermochemolysis temperature for all seven nucleobases. The methylated products trimethyl-adenine, 1, 3-dimethyl-thymine, 1, 3-dimethyl-uracil, trimethyl-cytosine, 1, 3, 7-trimethyl-xanthine (caffeine), and dimethyl-hypoxanthine, respectively, are the most stable forms of adenine, thymine, uracil, cytosine, guanine, and xanthine, and hypoxanthine in TMAH solutions. The limits of detection for adenine, thymine, and uracil were 0.075 nmol; the limits of detection for guanine, cytosine, and hypoxanthine were higher, at 0.40, 0.55, and 0.75 nmol, respectively. These experiments allowed to well constrain the analytical capabilities of the thermochemolysis experiments that will be performed on Mars to detect nucleobases.


Assuntos
Purinas/análise , Pirimidinonas/análise , Cromatografia Gasosa-Espectrometria de Massas , Temperatura Alta , Limite de Detecção , Marte , Purinas/química , Pirimidinonas/química , Pirólise , Voo Espacial/instrumentação
2.
J Phys Chem A ; 113(42): 11195-203, 2009 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-19827851

RESUMO

In this work Titan's atmospheric chemistry is simulated using a capacitively coupled plasma radio frequency discharge in a N(2)-CH(4) stationnary flux. Samples of Titan's tholins are produced in gaseous mixtures containing either 2 or 10% methane before the plasma discharge, covering the methane concentration range measured in Titan's atmosphere. We study their solubility and associated morphology, their infrared spectroscopy signature and the mass distribution of the soluble fraction by mass spectrometry. An important result is to highlight that the previous Titan's tholin solubility studies are inappropriate to fully characterize such a heterogeneous organic matter and we develop a new protocol to evaluate quantitatively tholins solubility. We find that tholins contain up to 35% in mass of molecules soluble in methanol, attached to a hardly insoluble fraction. Methanol is then chosen as a discriminating solvent to characterize the differences between soluble and insoluble species constituting the bulk tholins. No significant morphological change of shape or surface feature is derived from scanning electron microscopy after the extraction of the soluble fraction. This observation suggests a solid structure despite an important porosity of the grains. Infrared spectroscopy is recorded for both fractions. The IR spectra of the bulk, soluble, and insoluble tholins fractions are found to be very similar and reveal identical chemical signatures of nitrogen bearing functions and aliphatic groups. This result confirms that the chemical information collected when analyzing only the soluble fraction provides a valuable insight representative of the bulk material. The soluble fraction is ionized with an atmospheric pressure photoionization source and analyzed by a hybrid mass spectrometer. The congested mass spectra with one peak at every mass unit between 50 and 800 u confirm that the soluble fraction contains a complex mixture of organic molecules. The broad distribution, however, exhibits a regular pattern of mass clusters. Tandem collision induced dissociation analysis is performed in the negative ion mode to retrieve structural information. It reveals that (i) the molecules are ended by methyl, amine and cyanide groups, (ii) a 27 u neutral moiety (most probably HCN) is often released in the fragmentation of tholin anions, and (iii) an ubiquitous ionic fragment at m/z 66 is found in all tandem spectra. A tentative structure is proposed for this negative ion.


Assuntos
Atmosfera/química , Meio Ambiente Extraterreno/química , Saturno , Pressão Atmosférica , Espectrometria de Massas , Metano/química , Metanol/química , Microscopia Eletrônica de Varredura , Estrutura Molecular , Nitrogênio/química , Tamanho da Partícula , Porosidade , Solubilidade , Solventes/química , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA