Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 3(5): 763-779, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37377888

RESUMO

A deeper understanding of complex biological processes, including tumor development and immune response, requires ultra high-plex, spatial interrogation of multiple "omes". Here we present the development and implementation of a novel spatial proteogenomic (SPG) assay on the GeoMx Digital Spatial Profiler platform with next-generation sequencing readout that enables ultra high-plex digital quantitation of proteins (>100-plex) and RNA (whole transcriptome, >18,000-plex) from a single formalin-fixed paraffin-embedded (FFPE) sample. This study highlighted the high concordance, R > 0.85 and <15% change in sensitivity between the SPG assay and the single-analyte assays on various cell lines and tissues from human and mouse. Furthermore, we demonstrate that the SPG assay was reproducible across multiple users. When used in conjunction with advanced cellular neighborhood segmentation, distinct immune or tumor RNA and protein targets were spatially resolved within individual cell subpopulations in human colorectal cancer and non-small cell lung cancer. We used the SPG assay to interrogate 23 different glioblastoma multiforme (GBM) samples across four pathologies. The study revealed distinct clustering of both RNA and protein based on pathology and anatomic location. The in-depth investigation of giant cell glioblastoma multiforme (gcGBM) revealed distinct protein and RNA expression profiles compared with that of the more common GBM. More importantly, the use of spatial proteogenomics allowed simultaneous interrogation of critical protein posttranslational modifications alongside whole transcriptomic profiles within the same distinct cellular neighborhoods. Significance: We describe ultra high-plex spatial proteogenomics; profiling whole transcriptome and high-plex proteomics on a single FFPE tissue section with spatial resolution. Investigation of gcGBM versus GBM revealed distinct protein and RNA expression profiles.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Glioblastoma , Neoplasias Pulmonares , Proteogenômica , Humanos , Animais , Camundongos , Glioblastoma/genética , Perfilação da Expressão Gênica , Neoplasias Pulmonares/genética , RNA
2.
Microbiol Spectr ; 11(1): e0497422, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36688635

RESUMO

We identified an amino-benzothiazole scaffold from a whole-cell screen against recombinant Mycobacterium tuberculosis under expressing the essential signal peptidase LepB. The seed molecule had 2-fold higher activity against the LepB hypomorph. Through a combination of purchase and chemical synthesis, we explored the structure-activity relationship for this series; 34 analogs were tested for antitubercular activity and for cytotoxicity against eukaryotic cells. We identified molecules with improved potency and reduced cytotoxicity. However, molecules did not appear to target LepB directly and did not inhibit protein secretion. Key compounds showed good permeability, low protein binding, and lack of CYP inhibition, but metabolic stability was poor with short half-lives. The seed molecule showed good bactericidal activity against both replicating and nonreplicating bacteria, as well as potency against intracellular M. tuberculosis in murine macrophages. Overall, the microbiological properties of the series are attractive if metabolic stability can be improved, and identification of the target could assist in the development of this series. IMPORTANCE Mycobacterium tuberculosis, the causative agent of tuberculosis, is a serious global health problem requiring the development of new therapeutics. We previously ran a high-throughput screen and identified a series of compounds with antitubercular activity. In this paper, we test analogs of our hit molecules for activity against M. tuberculosis, as well as for activity against eukaryotic cells. We identified molecules with improved selectivity. Our molecules killed both replicating and nonreplicating bacteria but did not work by targeting protein secretion.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Mycobacterium tuberculosis/metabolismo , Antituberculosos/farmacologia , Antituberculosos/química , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Relação Estrutura-Atividade , Ligação Proteica , Testes de Sensibilidade Microbiana
3.
ACS Infect Dis ; 8(3): 557-573, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35192346

RESUMO

Rising antimicrobial resistance challenges our ability to combat bacterial infections. The problem is acute for tuberculosis (TB), the leading cause of death from infection before COVID-19. Here, we developed a framework for multiple pharmaceutical companies to share proprietary information and compounds with multiple laboratories in the academic and government sectors for a broad examination of the ability of ß-lactams to kill Mycobacterium tuberculosis (Mtb). In the TB Drug Accelerator (TBDA), a consortium organized by the Bill & Melinda Gates Foundation, individual pharmaceutical companies collaborate with academic screening laboratories. We developed a higher order consortium within the TBDA in which four pharmaceutical companies (GlaxoSmithKline, Sanofi, MSD, and Lilly) collectively collaborated with screeners at Weill Cornell Medicine, the Infectious Disease Research Institute (IDRI), and the National Institute of Allergy and Infectious Diseases (NIAID), pharmacologists at Rutgers University, and medicinal chemists at the University of North Carolina to screen ∼8900 ß-lactams, predominantly cephalosporins, and characterize active compounds. In a striking contrast to historical expectation, 18% of ß-lactams screened were active against Mtb, many without a ß-lactamase inhibitor. One potent cephaloporin was active in Mtb-infected mice. The steps outlined here can serve as a blueprint for multiparty, intra- and intersector collaboration in the development of anti-infective agents.


Assuntos
COVID-19 , Mycobacterium tuberculosis , Animais , Indústria Farmacêutica , Camundongos , SARS-CoV-2 , Universidades , beta-Lactamas/farmacologia
4.
ACS Omega ; 6(3): 2284-2311, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33521468

RESUMO

With the emergence of multi-drug-resistant strains of Mycobacterium tuberculosis, there is a pressing need for new oral drugs with novel mechanisms of action. A number of scaffolds with potent anti-tubercular in vitro activity have been identified from phenotypic screening that appear to target MmpL3. However, the scaffolds are typically lipophilic, which facilitates partitioning into hydrophobic membranes, and several contain basic amine groups. Highly lipophilic basic amines are typically cytotoxic against mammalian cell lines and have associated off-target risks, such as inhibition of human ether-à-go-go related gene (hERG) and IKr potassium current modulation. The spirocycle compound 3 was reported to target MmpL3 and displayed promising efficacy in a murine model of acute tuberculosis (TB) infection. However, this highly lipophilic monobasic amine was cytotoxic and inhibited the hERG ion channel. Herein, the related spirocycles (1-2) are described, which were identified following phenotypic screening of the Eli Lilly corporate library against M. tuberculosis. The novel N-alkylated pyrazole portion offered improved physicochemical properties, and optimization led to identification of a zwitterion series, exemplified by lead 29, with decreased HepG2 cytotoxicity as well as limited hERG ion channel inhibition. Strains with mutations in MmpL3 were resistant to 29, and under replicating conditions, 29 demonstrated bactericidal activity against M. tuberculosis. Unfortunately, compound 29 had no efficacy in an acute model of TB infection; this was most likely due to the in vivo exposure remaining above the minimal inhibitory concentration for only a limited time.

5.
ACS Chem Biol ; 15(6): 1581-1594, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32421305

RESUMO

The enhanced intracellular survival (Eis) protein of Mycobacterium tuberculosis (Mtb) is a versatile acetyltransferase that multiacetylates aminoglycoside antibiotics abolishing their binding to the bacterial ribosome. When overexpressed as a result of promoter mutations, Eis causes drug resistance. In an attempt to overcome the Eis-mediated kanamycin resistance of Mtb, we designed and optimized structurally unique thieno[2,3-d]pyrimidine Eis inhibitors toward effective kanamycin adjuvant combination therapy. We obtained 12 crystal structures of enzyme-inhibitor complexes, which guided our rational structure-based design of 72 thieno[2,3-d]pyrimidine analogues divided into three families. We evaluated the potency of these inhibitors in vitro as well as their ability to restore the activity of kanamycin in a resistant strain of Mtb, in which Eis was upregulated. Furthermore, we evaluated the metabolic stability of 11 compounds in vitro. This study showcases how structural information can guide Eis inhibitor design.


Assuntos
Acetiltransferases/antagonistas & inibidores , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/enzimologia , Desenho de Fármacos , Resistência a Canamicina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Relação Estrutura-Atividade
6.
J Antibiot (Tokyo) ; 73(8): 568-573, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32404991

RESUMO

Crude extracts of the marine sponge Chelonaplysilla sp. collected in Samoa, that were obtained from the NCI Open Repository (NCS 21903), inhibited Mycobacterium tuberculosis growth. Assay-guided fractionation of the extract led to the isolation and structural elucidation of the known diterpenoid macfarlandin D (1) and three new diterpenoids macfarlandins F (2), G (3), and H (4). Macfarlandin D (1) exhibited potent antimicrobial activity against M. tuberculosis with an MIC of 1.2 ± 0.4 µg mL-1. Macfarlandins F (2), G (3), and H (4) exhibited significantly weaker antitubercular activities, revealing SAR for the macfarlandin antitubercular pharmacophore. The structures of compounds 2, 3, and 4 were elucidated via detailed analysis of NMR and MS data.


Assuntos
Diterpenos/química , Diterpenos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Poríferos/química , Animais , Antituberculosos/química , Antituberculosos/farmacologia , Espectroscopia de Ressonância Magnética/métodos , Testes de Sensibilidade Microbiana/métodos
7.
Artigo em Inglês | MEDLINE | ID: mdl-30323042

RESUMO

The diaminoquinazoline series has good potency against Mycobacterium tuberculosis Resistant isolates have mutations in Rv3161c, a putative dioxygenase. We carried out metabolite analysis on a wild-type strain and an Rv3161c mutant strain after exposure to a diaminoquinazoline. The parental compound was found in intracellular extracts from the mutant but not the wild type. A metabolite consistent with a monohydroxylated form was identified in the wild type. These data support the hypothesis that Rv3161c metabolizes diaminoquinazolines in M. tuberculosis.


Assuntos
Antituberculosos/metabolismo , Dioxigenases/metabolismo , Mycobacterium tuberculosis/metabolismo , Quinazolinas/metabolismo , Fatores de Transcrição/metabolismo , Antituberculosos/farmacologia , Humanos , Oxigenases de Função Mista/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Quinazolinas/farmacologia , Relação Estrutura-Atividade
8.
PLoS One ; 13(10): e0198059, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30332412

RESUMO

There is an urgent need for the development of shorter, simpler and more tolerable drugs to treat antibiotic tolerant populations of Mycobacterium tuberculosis. We previously identified a series of hydrazones active against M. tuberculosis. We selected five representative compounds for further analysis. All compounds were active against non-replicating M. tuberculosis, with two compounds demonstrating greater activity under hypoxic conditions than aerobic culture. Compounds had bactericidal activity with MBC/MIC of < 4 and demonstrated an inoculum-dependent effect against aerobically replicating bacteria. Bacterial kill kinetics demonstrated a faster rate of kill against non-replicating bacilli generated by nutrient starvation. Compounds had limited activity against other bacterial species. In conclusion, we have demonstrated that hydrazones have some attractive properties in terms of their anti-tubercular activity.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Hidrazonas/química , Hidrazonas/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Mycobacterium tuberculosis/citologia , Mycobacterium tuberculosis/metabolismo , Oxigênio/metabolismo , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
9.
Biochem J ; 474(6): 1017-1039, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28126741

RESUMO

Guanosine 5'-triphosphate (GTP) cyclohydrolase-I (GCYH-I) catalyzes the first step in folic acid biosynthesis in bacteria and plants, biopterin biosynthesis in mammals, and the biosynthesis of 7-deazaguanosine-modified tRNA nucleosides in bacteria and archaea. The type IB GCYH (GCYH-IB) is a prokaryotic-specific enzyme found in many pathogens. GCYH-IB is structurally distinct from the canonical type IA GCYH involved in biopterin biosynthesis in humans and animals, and thus is of interest as a potential antibacterial drug target. We report kinetic and inhibition data of Neisseria gonorrhoeae GCYH-IB and two high-resolution crystal structures of the enzyme; one in complex with the reaction intermediate analog and competitive inhibitor 8-oxoguanosine 5'-triphosphate (8-oxo-GTP), and one with a tris(hydroxymethyl)aminomethane molecule bound in the active site and mimicking another reaction intermediate. Comparison with the type IA enzyme bound to 8-oxo-GTP (guanosine 5'-triphosphate) reveals an inverted mode of binding of the inhibitor ribosyl moiety and, together with site-directed mutagenesis data, shows that the two enzymes utilize different strategies for catalysis. Notably, the inhibitor interacts with a conserved active-site Cys149, and this residue is S-nitrosylated in the structures. This is the first structural characterization of a biologically S-nitrosylated bacterial protein. Mutagenesis and biochemical analyses demonstrate that Cys149 is essential for the cyclohydrolase reaction, and S-nitrosylation maintains enzyme activity, suggesting a potential role of the S-nitrosothiol in catalysis.


Assuntos
Proteínas de Bactérias/química , GTP Cicloidrolase/química , Guanosina Trifosfato/análogos & derivados , Neisseria gonorrhoeae/química , Trometamina/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Inibidores Enzimáticos/química , Escherichia coli/genética , Escherichia coli/metabolismo , GTP Cicloidrolase/antagonistas & inibidores , GTP Cicloidrolase/genética , GTP Cicloidrolase/metabolismo , Expressão Gênica , Guanosina Trifosfato/química , Cinética , Modelos Moleculares , Mutação , Neisseria gonorrhoeae/enzimologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Nitrosotióis/química , Especificidade por Substrato
10.
ACS Infect Dis ; 2(12): 893-902, 2016 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-27642770

RESUMO

The general secretion (Sec) pathway is a conserved essential pathway in bacteria and is the primary route of protein export across the cytoplasmic membrane. During protein export, the signal peptidase LepB catalyzes the cleavage of the signal peptide and subsequent release of mature proteins into the extracellular space. We developed a target-based whole cell assay to screen for potential inhibitors of LepB, the sole signal peptidase in Mycobacterium tuberculosis, using a strain engineered to underexpress LepB (LepB-UE). We screened 72,000 compounds against both the Lep-UE and wild-type (wt) strains. We identified the phenylhydrazone (PHY) series as having higher activity against the LepB-UE strain. We conducted a limited structure-activity relationship determination around a representative PHY compound with differential activity (MICs of 3.0 µM against the LepB-UE strain and 18 µM against the wt); several analogues were less potent against the LepB overexpressing strain. A number of chemical modifications around the hydrazone moiety resulted in improved potency. Inhibition of LepB activity was observed for a number of compounds in a biochemical assay using cell membrane fraction derived from M. tuberculosis. Compounds did not increase cell permeability, dissipate membrane potential, or inhibit an unrelated mycobacterial enzyme, suggesting a specific mode of action related to the LepB secretory mechanism.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Antituberculosos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Inibidores Enzimáticos/química , Humanos , Cinética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Relação Estrutura-Atividade , Tuberculose/microbiologia
11.
Chembiochem ; 17(15): 1426-9, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27238740

RESUMO

The bacterial pathway of olefin biosynthesis starts with OleA catalyzed "head-to-head" condensation of two CoA-activated long-chain fatty acids to generate (R)-2-alkyl-3-ketoalkanoic acids. A subsequent OleD-catalyzed reduction generates (2R,3S)-2-alkyl-3-hydroxyalkanoic acids. We now show that the final step in the pathway is an OleC-catalyzed ATP-dependent decarboxylative dehydration to form the corresponding Z olefins. Higher kcat /Km values were seen for substrates with longer alkyl chains. All four stereoisomers of 2-hexyl-3-hydroxydecanoic acid were shown to be substrates, and GC-MS and NMR analyses confirmed that the product in each case was (Z)-pentadec-7-ene. LC-MS analysis supported the formation of AMP adduct as an intermediate. The enzymatic and stereochemical course of olefin biosynthesis from long-chain fatty acids by OleA, OleD and OleC is now established.


Assuntos
Alcenos/metabolismo , Redes e Vias Metabólicas , Ácidos Micólicos/metabolismo , Stenotrophomonas maltophilia/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Biocatálise , Descarboxilação , Desidratação , Stenotrophomonas maltophilia/enzimologia
12.
Chem Biol ; 20(6): 772-83, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-23790488

RESUMO

The formation of an activated cis-3-cyclohexylpropenoic acid by Plm1, the first extension module of the phoslactomycin polyketide synthase, is proposed to occur through an L-3-hydroxyacyl-intermediate as a result of ketoreduction by an A-type ketoreductase (KR). Here, we demonstrate that the KR domain of Plm1 (PlmKR1) catalyzes the formation of an L-3-hydroxyacyl product. The crystal structure of PlmKR1 revealed a well-ordered active site with a nearby Trp residue characteristic of A-type KRs. Structural comparison of PlmKR1 with B-type KRs that produce D-3-hydroxyacyl intermediates revealed significant differences. The active site of cofactor-bound A-type KRs is in a catalysis-ready state, whereas cofactor-bound B-type KRs are in a precatalytic state. Furthermore, the closed lid loop in substrate-bound A-type KRs restricts active site access from all but one direction, which is proposed to control the stereochemistry of ketoreduction.


Assuntos
Oxirredutases do Álcool/metabolismo , Alcenos/metabolismo , Proteínas de Bactérias/metabolismo , Oxirredutases do Álcool/química , Alcenos/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sítios de Ligação , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Cinética , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência , Estereoisomerismo , Especificidade por Substrato
13.
Biochemistry ; 51(46): 9333-41, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23116287

RESUMO

The DEBS1-TE fusion protein is comprised of the loading module, the first two extension modules, and the terminal TE domain of the Saccharopolyspora erythraea 6-deoxyerythronolide B synthase. DEBS1-TE produces triketide lactones that differ on the basis of the starter unit selected by the loading module. Typical fermentations with plasmid-based expression of DEBS1-TE produce a 6:1 ratio of propionate to isobutyrate-derived triketide lactones. Functional dissection of the loading module from the remainder of DEBS1-TE results in 50% lower titers of triketide lactone and a dramatic shift in the production to a 1:4 ratio of propionate to isobutyrate-derived products. A series of radiolabeling studies of the loading module has shown that transfer from the AT to the ACP occurs much faster for propionate than for isobutyrate. However, the equilibrium occupancy of the AT favors isobutyrate such that propionate is outcompeted for ACP occupancy. Thus, propionyl-ACP is the kinetic product, while isobutyryl-ACP is the thermodynamic product. A slowed transfer from the loading domain ACP to first-extension module KS due to functional dissection of DEBS1-TE allows this isobutyryl-ACP-favored equilibrium to be realized and likely accounts for the observed shift in triketide lactone products.


Assuntos
Lactonas/química , Policetídeo Sintases/química , Saccharopolyspora/enzimologia , Sequência de Bases , Cromatografia Líquida de Alta Pressão , Primers do DNA , Fermentação , Hidrólise , Espectrometria de Massas , Plasmídeos , Reação em Cadeia da Polimerase
14.
ACS Chem Biol ; 7(1): 197-209, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-21999246

RESUMO

The biosynthesis of GTP derived metabolites such as tetrahydrofolate (THF), biopterin (BH(4)), and the modified tRNA nucleosides queuosine (Q) and archaeosine (G(+)) relies on several enzymes of the Tunnel-fold superfamily. A subset of these proteins includes the 6-pyruvoyltetrahydropterin (PTPS-II), PTPS-III, and PTPS-I homologues, all members of the COG0720 family that have been previously shown to transform 7,8-dihydroneopterin triphosphate (H(2)NTP) into different products. PTPS-II catalyzes the formation of 6-pyruvoyltetrahydropterin in the BH(4) pathway, PTPS-III catalyzes the formation of 6-hydroxylmethyl-7,8-dihydropterin in the THF pathway, and PTPS-I catalyzes the formation of 6-carboxy-5,6,7,8-tetrahydropterin in the Q pathway. Genes of these three enzyme families are often misannotated as they are difficult to differentiate by sequence similarity alone. Using a combination of physical clustering, signature motif, phylogenetic codistribution analyses, in vivo complementation studies, and in vitro enzymatic assays, a complete reannotation of the COG0720 family was performed in prokaryotes. Notably, this work identified and experimentally validated dual function PTPS-I/III enzymes involved in both THF and Q biosynthesis. Both in vivo and in vitro analyses showed that the PTPS-I family could tolerate a translation of the active site cysteine and was inherently promiscuous, catalyzing different reactions on the same substrate or the same reaction on different substrates. Finally, the analysis and experimental validation of several archaeal COG0720 members confirmed the role of PTPS-I in archaeosine biosynthesis and resulted in the identification of PTPS-III enzymes with variant signature sequences in Sulfolobus species. This study reveals an expanded versatility of the COG0720 family members and illustrates that for certain protein families extensive comparative genomic analysis beyond homology is required to correctly predict function.


Assuntos
Proteínas Arqueais/metabolismo , Biopterinas/metabolismo , Guanosina Trifosfato/metabolismo , Neopterina/análogos & derivados , Fósforo-Oxigênio Liases/metabolismo , Sulfolobus/enzimologia , Motivos de Aminoácidos , Proteínas Arqueais/genética , Biopterinas/genética , Teste de Complementação Genética , Guanosina/análogos & derivados , Guanosina/metabolismo , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Neopterina/genética , Neopterina/metabolismo , Nucleosídeo Q/metabolismo , Fósforo-Oxigênio Liases/genética , Filogenia , Estrutura Terciária de Proteína/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Sulfolobus/genética , Tetra-Hidrofolatos/metabolismo
15.
Biochemistry ; 50(44): 9633-40, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-21958090

RESUMO

OleD is shown to play a key reductive role in the generation of alkenes (olefins) from acyl thioesters in Stenotrophomonas maltophilia. The gene coding for OleD clusters with three other genes, oleABC, and all appear to be transcribed in the same direction as an operon in various olefin producing bacteria. In this study, a series of substrates varying in chain length and stereochemistry were synthesized and used to elucidate the functional role and substrate specificity of OleD. We demonstrated that OleD, which is an NADP(H) dependent reductase, is a homodimer which catalyzes the reversible stereospecific reduction of 2-alkyl-3-ketoalkanoic acids. Maximal catalytic efficiency was observed with syn-2-decyl-3-hydroxytetradecanoic acid, with a k(cat)/K(m) 5- and 8-fold higher than for syn-2-octyl-3-hydroxydodecanoic acid and syn-2-hexyl-3-hydroxydecanoic acid, respectively. OleD activity was not observed with syn-2-butyl-3-hydroxyoctanoic acid and compounds lacking a 2-alkyl group such as 3-ketodecanoic and 3-hydroxydecanoic acids, suggesting the necessity of the 2-alkyl chain for enzyme recognition and catalysis. Using diastereomeric pairs of substrates and 4 enantiopure isomers of 2-hexyl-3-hydroxydecanoic acid of known stereochemistry, OleD was shown to have a marked stereochemical preference for the (2R,3S)-isomer. Finally, experiments involving OleA and OleD demonstrate the first 3 steps and stereochemical course in olefin formation from acyl thioesters; condensation to form a 2-alkyl-3-ketoacyl thioester, subsequent thioester hydrolysis, and ketone reduction.


Assuntos
Alcenos/síntese química , Proteínas de Bactérias/química , NADPH Oxidases/química , Stenotrophomonas maltophilia/enzimologia , Proteínas de Bactérias/biossíntese , Catálise , NADPH Oxidases/fisiologia , Estereoisomerismo , Especificidade por Substrato
16.
Chem Biol ; 18(9): 1075-81, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21944746

RESUMO

Polyketide natural products generated by type I modular polyketide synthases (PKSs) are vital components in our drug repertoire. To reprogram these biosynthetic assembly lines, we must first understand the steps that occur within the modular "black boxes." Herein, key steps of acyl-CoA extender unit selection are explored by in vitro biochemical analysis of the PikAIV PKS model system. Two complementary approaches are employed: a fluorescent-probe assay for steady-state kinetic analysis, and Fourier Transform Ion Cyclotron Resonance-mass spectrometry (FTICR-MS) to monitor active-site occupancy. Findings from five enzyme variants and four model substrates have enabled a model to be proposed involving catalysis based upon acyl-CoA substrate loading followed by differential rates of hydrolysis. These efforts suggest a strategy for future pathway engineering efforts using unnatural extender units with slow rates of hydrolytic off-loading from the acyltransferase domain.


Assuntos
Acil Coenzima A/química , Antibacterianos/biossíntese , Análise de Fourier , Macrolídeos/metabolismo , Espectrometria de Massas , Policetídeo Sintases/química , Acil Coenzima A/metabolismo , Antibacterianos/química , Domínio Catalítico , Hidrólise , Cinética , Macrolídeos/química , Mutação , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato
17.
J Bacteriol ; 191(22): 6936-49, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19767425

RESUMO

GTP cyclohydrolase I (GCYH-I) is an essential Zn(2+)-dependent enzyme that catalyzes the first step of the de novo folate biosynthetic pathway in bacteria and plants, the 7-deazapurine biosynthetic pathway in Bacteria and Archaea, and the biopterin pathway in mammals. We recently reported the discovery of a new prokaryotic-specific GCYH-I (GCYH-IB) that displays no sequence identity to the canonical enzyme and is present in approximately 25% of bacteria, the majority of which lack the canonical GCYH-I (renamed GCYH-IA). Genomic and genetic analyses indicate that in those organisms possessing both enzymes, e.g., Bacillus subtilis, GCYH-IA and -IB are functionally redundant, but differentially expressed. Whereas GCYH-IA is constitutively expressed, GCYH-IB is expressed only under Zn(2+)-limiting conditions. These observations are consistent with the hypothesis that GCYH-IB functions to allow folate biosynthesis during Zn(2+) starvation. Here, we present biochemical and structural data showing that bacterial GCYH-IB, like GCYH-IA, belongs to the tunneling-fold (T-fold) superfamily. However, the GCYH-IA and -IB enzymes exhibit significant differences in global structure and active-site architecture. While GCYH-IA is a unimodular, homodecameric, Zn(2+)-dependent enzyme, GCYH-IB is a bimodular, homotetrameric enzyme activated by a variety of divalent cations. The structure of GCYH-IB and the broad metal dependence exhibited by this enzyme further underscore the mechanistic plasticity that is emerging for the T-fold superfamily. Notably, while humans possess the canonical GCYH-IA enzyme, many clinically important human pathogens possess only the GCYH-IB enzyme, suggesting that this enzyme is a potential new molecular target for antibacterial development.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ácido Fólico/biossíntese , GTP Cicloidrolase/química , GTP Cicloidrolase/metabolismo , Zinco/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Biologia Computacional , Cristalografia por Raios X , GTP Cicloidrolase/genética , Manganês/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos
18.
J Biol Chem ; 281(49): 37586-93, 2006 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-17032654

RESUMO

GTP cyclohydrolase I (GCYH-I) is the first enzyme of the de novo tetrahydrofolate biosynthetic pathway present in bacteria, fungi, and plants, and encoded in Escherichia coli by the folE gene. It is also the first enzyme of the biopterin (BH4) pathway in Homo sapiens, where it is encoded by a homologous folE gene. A homology-based search of GCYH-I orthologs in all sequenced bacteria revealed a group of microbes, including several clinically important pathogens, that encoded all of the enzymes of the tetrahydrofolate biosynthesis pathway but GCYH-I, suggesting that an alternate family was present in these organisms. A prediction based on phylogenetic occurrence and physical clustering identified the COG1469 family as a potential candidate for this missing enzyme family. The GCYH-I activity of COG1469 family proteins from a variety of sources (Thermotoga maritima, Bacillus subtilis, Acinetobacter baylyi, and Neisseria gonorrhoeae) was experimentally verified in vivo and/or in vitro. Although there is no detectable sequence homology with the canonical GCYH-I, protein fold recognition based on sequence profiles, secondary structure, and solvation potential information suggests that, like GCYH-I proteins, COG1469 proteins are members of the tunnel-fold (T-fold) structural superfamily. This new GCYH-I family is found in approximately 20% of sequenced bacteria and is prevalent in Archaea, but the family is to this date absent in Eukarya.


Assuntos
Bactérias/enzimologia , GTP Cicloidrolase/metabolismo , Células Procarióticas/enzimologia , Acinetobacter/enzimologia , Acinetobacter/genética , Sequência de Aminoácidos , Archaea/enzimologia , Archaea/genética , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Bactérias/genética , Sequência de Bases , DNA Bacteriano/genética , GTP Cicloidrolase/química , GTP Cicloidrolase/classificação , GTP Cicloidrolase/genética , Genes Bacterianos , Teste de Complementação Genética , Humanos , Dados de Sequência Molecular , Neisseria gonorrhoeae/enzimologia , Neisseria gonorrhoeae/genética , Filogenia , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Thermotoga maritima/enzimologia , Thermotoga maritima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA