Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Cardiovasc Res ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39086170

RESUMO

AIMS: Circulating levels of sphingosine 1-phosphate (S1P), an HDL-associated ligand for endothelial cell (EC) protective S1P receptor-1 (S1PR1), are reduced in disease states associated with endothelial dysfunction. Yet as S1PR1 has high affinity for S1P and can be activated by ligand-independent mechanisms and EC-autonomous S1P production, it is unclear if relative reductions in circulating S1P impact endothelial function. It is also unclear how EC S1PR1 insufficiency, whether induced by ligand deficiency or by S1PR1-directed immunosuppressive therapy, affects different vascular subsets. METHODS AND RESULTS: We here fine-map the zonation of S1PR1 signalling in the murine blood and lymphatic vasculature, superimpose cell type-specific and relative deficiencies in S1P production to define ligand source- and dose-dependence, and correlate receptor engagement to essential functions. In naïve blood vessels, despite broad expression, EC S1PR1 engagement was restricted to resistance-size arteries, lung capillaries and high-endothelial venules (HEV). Similar zonation was observed for albumin extravasation in EC S1PR1 deficient mice, and brain extravasation was reproduced with arterial EC-selective S1pr1 deletion. In lymphatic EC, S1PR1 engagement was high in collecting vessels and lymph nodes and low in terminal capillaries that drain tissue fluids. While EC S1P production sustained S1PR1 signaling in lymphatics and HEV, hematopoietic cells provided ∼90% of plasma S1P and sustained signaling in resistance arteries and lung capillaries. S1PR1 signaling and endothelial function were both surprisingly sensitive to reductions in plasma S1P with apparent saturation around 50% of normal levels. S1PR1 engagement did not depend on sex or age, but modestly increased in arteries in hypertension and diabetes. Sphingosine kinase (Sphk)-2 deficiency also increased S1PR1 engagement selectively in arteries, which could be attributed to Sphk1-dependent S1P release from perivascular macrophages. CONCLUSIONS: This study highlights vessel subtype-specific S1PR1 functions and mechanisms of engagement and supports the relevance of S1P as circulating biomarker for endothelial function.

2.
J Vasc Res ; 60(5-6): 273-282, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37980887

RESUMO

INTRODUCTION: Cerebral blood flow (CBF) is reduced in patients with Alzheimer's disease (AD). Flow-mediated dilation (FMD), which plays a key role in the regulation of blood flow, is attenuated by endothelin-1. We hypothesized that endothelin receptor blockade may improve CBF in AD. METHODS: We investigated cerebrovascular reactivity in a mouse model of AD (APP-PS1; 5-6-month-old male subjects). We assessed the in vivo response to normoxic hypercapnia and in vitro FMD in isolated cerebral and mesenteric resistance arteries before and after endothelin receptor blockade (bosentan). RESULTS: Normoxic hypercapnia increased basilar trunk blood flow velocity (+12.3 ± 2.4%; p = 0.006, n = 6) in wild-type (WT) mice but reduced blood flow in APP-PS1 mice (-11.4 ± 1.2%; p < 0.0001, n = 8). Bosentan (50 mg/kg, acute intraperitoneal injection) restored cerebrovascular reactivity in APP-PS1 mice (+10.2 ± 2.2%; p < 0.0001, n = 8) but had no effect in WT. FMD was reduced in the posterior cerebral artery of APP-PS1 compared to WT and was normalized by bosentan (1 µmol/L, 30 min, or 50 mg/kg/day for 28 days). FMD was similar in the mesenteric artery of APPS-PS1 and WT. CONCLUSION: APP-PS1 mice exhibited cerebrovascular endothelial dysfunction. Acute and chronic blockade of endothelin receptors restored endothelial vasomotor function, suggesting a promising therapeutic approach to restoring cerebral vasoreactivity in AD.


Assuntos
Doença de Alzheimer , Humanos , Masculino , Camundongos , Animais , Lactente , Doença de Alzheimer/tratamento farmacológico , Bosentana , Receptores de Endotelina , Dilatação , Hipercapnia , Modelos Animais de Doenças , Circulação Cerebrovascular , Camundongos Transgênicos , Endotelina-1
4.
Cell Mol Life Sci ; 80(8): 210, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37460898

RESUMO

Dysregulated autophagy is associated with cardiovascular and metabolic diseases, where impaired flow-mediated endothelial cell responses promote cardiovascular risk. The mechanism by which the autophagy machinery regulates endothelial functions is complex. We applied multi-omics approaches and in vitro and in vivo functional assays to decipher the diverse roles of autophagy in endothelial cells. We demonstrate that autophagy regulates VEGF-dependent VEGFR signaling and VEGFR-mediated and flow-mediated eNOS activation. Endothelial ATG5 deficiency in vivo results in selective loss of flow-induced vasodilation in mesenteric arteries and kidneys and increased cerebral and renal vascular resistance in vivo. We found a crucial pathophysiological role for autophagy in endothelial cells in flow-mediated outward arterial remodeling, prevention of neointima formation following wire injury, and recovery after myocardial infarction. Together, these findings unravel a fundamental role of autophagy in endothelial function, linking cell proteostasis to mechanosensing.


Assuntos
Células Endoteliais , Infarto do Miocárdio , Humanos , Autofagia , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Artérias Mesentéricas/metabolismo , Infarto do Miocárdio/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Transdução de Sinais , Vasodilatação , Animais , Camundongos
5.
Stroke Vasc Interv Neurol ; 3(2): e000476, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-37496732

RESUMO

Background: During the past few decades, several pathophysiological processes contributing to intracranial aneurysm (IA) rupture have been identified, including irregular IA shape, altered hemodynamic stress within the IA, and vessel wall inflammation. The use of preclinical models of IA and imaging tools is paramount to better understand the underlying disease mechanisms. Methods: We used 2 established mouse models of IA, and we analyzed the progression of the IA by magnetic resonance imaging, transcranial Doppler, and histology. Results: In both models of IA, we observed, by transcranial Doppler, a significant decrease of the blood velocities and wall shear stress of the internal carotid arteries. We also observed the formation of tortuous arteries in both models that were correlated with the presence of an aneurysm as confirmed by magnetic resonance imaging and histology. A high grade of tortuosity is associated with a significant decrease of the mean blood flow velocities and a greater artery dilation. Conclusions: Transcranial Doppler is a robust and convenient imaging method to evaluate the progression of IA. Detection of decreased blood flow velocities and increased tortuosity can be used as reliable indicators of IA.

6.
Autoimmun Rev ; 22(3): 103272, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36649878

RESUMO

OBJECTIVES: Permanent visual impairment is a major complication of giant cell arteritis (GCA). We investigated the added value of color Doppler imaging (CDI) of the central retinal artery (CRA) in patients with suspected GCA for early risk evaluation before temporal artery biopsy (TAB) results become available. METHODS: We conducted a non-interventional observational study of 30 consecutive patients hospitalized for suspected GCA, including a comprehensive analysis of clinical, laboratory, imaging, CDI and pathology data. GCA was diagnosed or excluded (GCA+, GCA-, respectively) according to American College of Rheumatology (ACR) criteria and TAB findings. Three patients not meeting ACR criteria were excluded secondarily. The GCA- group contained ten patients, and the GCA+ group contained 17 patients, including eight with unilateral, transient or permanent clinical visual impairment (CVI). RESULTS: Mean blood flow velocity (mBFV) in the CRA was impaired in the affected eyes of GCA + CVI+ patients (1.9 ± 0.9 cm.s-1, p < 0.001) relative to controls (4.1 ± 1.0 cm.s-1), GCA- patients (3.6 ± 0.7 cm.s-1) and GCA + CVI- patients (3.8 ± 0.8 cm.s-1). The mBFVs of the CRA was similar for affected and fellow eyes (right or left). CRA mBFV measurements effectively differentiated between patients with and without CVI (ROC-curve analysis, AUC = 0.925 [95%CI: 0.700 to 0.996], p < 0.0001, 88% sensitivity, 89% specificity, and cutoff of ≤2.7 cm.s-1 for affected eyes; 75% sensitivity, 100% specificity and cutoff of ≤2.2 cm.s-1 for fellow eyes). CONCLUSION: CDI facilities the early detection of visual ischemia risk in GCA+ patients, justifying urgent high-dose corticosteroid administration to save at least the fellow eye before pathology results become available.


Assuntos
Arterite de Células Gigantes , Artéria Retiniana , Humanos , Biópsia , Olho/patologia , Arterite de Células Gigantes/complicações , Arterite de Células Gigantes/diagnóstico , Arterite de Células Gigantes/patologia , Hemodinâmica , Artéria Retiniana/patologia , Estudos Retrospectivos , Transtornos da Visão
10.
Transl Stroke Res ; 13(4): 512-527, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34797519

RESUMO

Enhancing the collateral blood supply during the acute phase of cerebral ischemia may limit both the extension of the core infarct, by rescuing the penumbra area, and the degree of disability. Many imaging techniques have been applied to rodents in preclinical studies, to evaluate the magnitude of collateral blood flow and the time course of responses during the early phase of ischemic stroke. The collateral supply follows several different routes at the base of the brain (the circle of Willis) and its surface (leptomeningeal or pial arteries), corresponding to the proximal and distal collateral pathways, respectively. In this review, we describe and illustrate the cerebral collateral systems and their modifications following pre-Willis or post-Willis occlusion in rodents. We also review the potential pharmaceutical agents for stimulating the collateral blood supply tested to date. The time taken to establish a collateral blood flow supply through the leptomeningeal anastomoses differs between young and adult animals and between different species and genetic backgrounds. Caution is required when transposing preclinical findings to humans, and clinical trials must be performed to check the added value of pharmacological agents for stimulating the collateral blood supply at appropriate time points. However, collateral recruitment appears to be a rapid, beneficial, endogenous mechanism that can be stimulated shortly after artery occlusion. It should be considered a treatment target for use in addition to recanalization strategies.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Animais , Infarto Cerebral , Circulação Cerebrovascular/fisiologia , Circulação Colateral/fisiologia
11.
Am J Hypertens ; 35(5): 414-422, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-34969077

RESUMO

BACKGROUND: Heart failure (HF) is frequent in patients with diabetes mellitus (DM), and early detection improves prognosis. We investigated whether analysis of brachial blood pressure (BP) in daily practice can identify patients with DM and high risk for subsequent HF, as defined by brain natriuretic peptide (BNP) >50 pg/ml. METHODS: 3,367 outpatients with DM without a history of cardiovascular disease were enrolled in a prospective study. RESULTS: Age (mean ± SD) was 56 ± 14 years, 57% were male, 78% had type 2 DM, and HbA1C was 7.4 ± 1.4%. A history of hypertension was recorded in 43% of patients and uncontrolled BP was observed in 13%. BNP concentration (mean ± SD) was 21 ± 21 ng/l and 9% of patients had high risk of incident HF. Brachial pulse pressure (PP) was the best BP parameter associated with high risk of incident HF compared with diastolic, systolic, or mean BP (area under the receiver operating characteristic curve: 0.70, 0.65, 0.57, and 0.57, respectively). A multivariate analysis demonstrated that elevated PP was independently associated with high risk of incident HF (odds ratio [95% confidence interval, CI]: 2.1 [1.5-2.8] for PP ≥65 mm Hg). Study of central aortic BP and pulse wave velocity on 117 patients demonstrated that high risk of incident HF was associated with increased arterial stiffness and subendocardial ischemia. After a mean follow-up of 811 days, elevated PP was associated with increased all-cause mortality (hazard ratio [95% CI]: 1.7 [1.1-2.8]). CONCLUSIONS: Brachial PP is powerful and independent "easy to record" BP parameter associated with high risk of incident HF in diabetic patients.


Assuntos
Diabetes Mellitus , Insuficiência Cardíaca , Hipertensão , Adulto , Idoso , Pressão Sanguínea/fisiologia , Feminino , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/etiologia , Humanos , Hipertensão/diagnóstico , Hipertensão/epidemiologia , Masculino , Pessoa de Meia-Idade , Peptídeo Natriurético Encefálico , Estudos Prospectivos , Análise de Onda de Pulso
12.
J Clin Med ; 10(21)2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34768435

RESUMO

(1) Background: Takayasu arteritis (TA) is a chronic inflammatory large-vessel vasculitis. Ultra-wide-field imaging allows describing the retinal lesions in these patients and correlating them with vascular supra-aortic stenosis. (2) Methods: In total, 54 eyes of 27 patients diagnosed with TA were included, and a complete ophthalmological examination was performed, including UWF color fundus photography (UWF-CFP), fluorescein angiography (UWF-FA), and computed tomography angiography measuring supra-aortic stenosis. Eleven patients underwent Doppler ultrasound imaging assessing the blood flow velocity (BFV) in the central retinal artery (CRA). (3) Results: Microaneurysms were detected in 18.5% of eyes on fundus examination, in 24.4% of eyes on UWF-CFP, and in 94.4% of eyes on UWF-FA. The number of microaneurysms significantly correlated with the presence of an ipsilateral supra-aortic stenosis (p = 0.026), the presence of hypertension (p = 0.0011), and the duration of the disease (p = 0.007). The number of microaneurysms per eye negatively correlated with the BFV in the CRA (r = -0.61; p = 0.003). (4) Conclusions: UWF-FA improved the assessment of TA-associated retinal findings. The significant correlation between the number of microaneurysms and the BFV in the CRA gives new insight to our understanding of Takayasu retinopathy. The total number of microaneurysms could be used as an interesting prognostic factor for TA.

13.
Int J Mol Sci ; 22(18)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34576005

RESUMO

Ischemia is a common cause of acute kidney injury worldwide, frequently occurring in patients undergoing cardiac surgery or admitted to the intensive care unit (ICU). Thus, ischemia-reperfusion injury (IRI) remains one of the main experimental models for the study of kidney diseases. However, the classical technique, based on non-traumatic surgical clamps, suffers from several limitations. It does not allow the induction of multiple episodes of acute kidney injury (AKI) in the same animal, which would be relevant from a human perspective. It also requires a deep and long sedation, raising the question of potential anaesthesia-related biases. We designed a vascular occluding device that can be activated remotely in conscious mice. We first assessed the intensity and the reproducibility of the acute kidney injury induced by this new device. We finally investigated the role played by the anaesthesia in the IRI models at the histological, functional and transcriptomic levels. We showed that this technique allows the rapid induction of renal ischemia in a repeatable and reproducible manner, breaking several classical limitations. In addition, we used its unique specificities to highlight the renal protective effect conferred by the anaesthesia, related to the mitigation of the IRI transcriptomic program.


Assuntos
Anestesia , Ketamina/farmacologia , Nefropatias/metabolismo , Rim/metabolismo , Traumatismo por Reperfusão/metabolismo , Transcriptoma , Xilazina/farmacologia , Animais , Modelos Animais de Doenças , Ketamina/efeitos adversos , Masculino , Camundongos , Xilazina/efeitos adversos
15.
Front Physiol ; 12: 693052, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34413786

RESUMO

In the presence of tumor angiogenesis, blood flow must increase, leading to an elevation of blood flow velocities (BFVels) and wall shear stress (WSS) in upstream native arteries. An adaptive arterial remodeling is stimulated, whose purpose lies in the enlargement of the arterial inner diameter, aiming for normalization of BFVels and WSS. Remodeling engages delayed processes that are efficient only several weeks/months after initiation, independent from those governing expansion of the neovascular network. Therefore, during tumor expansion, there is a time interval during which elevation of BFVels and WSS could reflect disease progression. Conversely, during the period of stability, BFVels and WSS drop back to normal values due to the achievement of remodeling processes. Ovarian peritoneal carcinomatosis (OPC), pseudomyxoma peritonei (PMP), and superficial arteriovenous malformations (AVMs) are diseases characterized by the development of abnormal vascular networks developed on native ones. In OPC and PMP, preoperative blood flow in the superior mesenteric artery (SMA) correlated with the per-operative peritoneal carcinomatosis index (OPC: n = 21, R = 0.79, p < 0.0001, PMP: n = 66, R = 0.63, p < 0.0001). Moreover, 1 year after surgery, WSS in the SMA helped in distinguishing patients with PMP from those without disease progression [ROC-curve analysis, AUC = 0.978 (0.902-0.999), p < 0.0001, sensitivity: 100.0%, specificity: 93.5%, cutoff: 12.1 dynes/cm2]. Similarly, WSS in the ipsilateral afferent arteries close to the lesion distinguished stable from progressive AVM [ROC-curve analysis, AUC: 0.988, (0.919-1.000), p < 0.0001, sensitivity: 93.5%, specificity: 95.7%; cutoff: 26.5 dynes/cm2]. Blood flow volume is indicative of the tumor burden in OPC and PMP, and WSS represents an early sensitive and specific vascular marker of disease progression in PMP and AVM.

16.
Curr Issues Mol Biol ; 43(1): 301-312, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200155

RESUMO

The poly(ADP-ribose) polymerase inhibitor PJ34 has recently been reported to increase cerebral blood flow, via the endothelial NO synthase, in the naive mouse brain throughout life. We addressed here the benefits of PJ34 after neonatal ischemia on hemodynamics and components of the neurovascular unit including the blood-brain barrier (BBB), microglia, and astrocytes. Nine-day-old mice were subjected to permanent MCA occlusion (pMCAo), and treated with either PBS or PJ34 (10 mg/kg). Mean blood-flow velocities (mBFV) were measured in both internal carotid arteries (ICA) and basilar trunk (BT) using Doppler-ultrasonography. BBB opening was assessed through somatostatin-receptor type-2 internalization and immunohistochemistry at 24 and 48 h. Lesion areas were measured 8 days after ischemia. In PBS-treated mice, pMCAo involved a drop in mBFV in the left ICA (p < 0.001 vs. basal), whereas mBFV remained stable in both right ICA and BT. PJ34 prevented this drop in the left ICA (NS vs. basal) and increased mBFV in the right ICA (p = 0.0038 vs. basal). No modification was observed in the BT. In contrast to PBS, BBB disruption extent and astrocyte demise were reduced in PJ34 mice only in the rostral brain at 48 h and 8 days post-pMCAo, respectively. Accordingly, 8 days after pMCAo, affected areas were reduced in the rostral brain (Bregma +0.86 and +0.14 mm), whereas total tissue loss was not reduced after PJ34 (4.0 ± 3.1%) vs. PBS (5.8 ± 3.4%). These results show that PJ34 reduced BBB permeability, astrocyte demise, and tissue loss (particularly in the rostral territories), suggesting that collateral supply mainly proceeds from the anterior ICA's branches in the ischemic neonatal mouse brain.


Assuntos
Encéfalo/efeitos dos fármacos , Fenantrenos/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Animais Recém-Nascidos , Astrócitos/citologia , Astrócitos/metabolismo , Barreira Hematoencefálica , Encéfalo/metabolismo , Isquemia Encefálica/patologia , Artéria Carótida Interna/patologia , Feminino , Hemodinâmica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Permeabilidade , Fenótipo , Acidente Vascular Cerebral/fisiopatologia , Ultrassonografia Doppler
17.
Nat Commun ; 12(1): 1483, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674611

RESUMO

Acute myocardial infarction is a common condition responsible for heart failure and sudden death. Here, we show that following acute myocardial infarction in mice, CD8+ T lymphocytes are recruited and activated in the ischemic heart tissue and release Granzyme B, leading to cardiomyocyte apoptosis, adverse ventricular remodeling and deterioration of myocardial function. Depletion of CD8+ T lymphocytes decreases apoptosis within the ischemic myocardium, hampers inflammatory response, limits myocardial injury and improves heart function. These effects are recapitulated in mice with Granzyme B-deficient CD8+ T cells. The protective effect of CD8 depletion on heart function is confirmed by using a model of ischemia/reperfusion in pigs. Finally, we reveal that elevated circulating levels of GRANZYME B in patients with acute myocardial infarction predict increased risk of death at 1-year follow-up. Our work unravels a deleterious role of CD8+ T lymphocytes following acute ischemia, and suggests potential therapeutic strategies targeting pathogenic CD8+ T lymphocytes in the setting of acute myocardial infarction.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Granzimas/genética , Granzimas/metabolismo , Coração/fisiopatologia , Remodelação Ventricular/fisiologia , Animais , Apoptose , Linfócitos T CD8-Positivos/patologia , Modelos Animais de Doenças , Feminino , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Proteínas de Homeodomínio/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/metabolismo , Miocárdio/patologia , Suínos , Transcriptoma
19.
Circ Res ; 128(3): 363-382, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33301355

RESUMO

RATIONALE: Cerebrovascular function is critical for brain health, and endogenous vascular protective pathways may provide therapeutic targets for neurological disorders. S1P (Sphingosine 1-phosphate) signaling coordinates vascular functions in other organs, and S1P1 (S1P receptor-1) modulators including fingolimod show promise for the treatment of ischemic and hemorrhagic stroke. However, S1P1 also coordinates lymphocyte trafficking, and lymphocytes are currently viewed as the principal therapeutic target for S1P1 modulation in stroke. OBJECTIVE: To address roles and mechanisms of engagement of endothelial cell S1P1 in the naive and ischemic brain and its potential as a target for cerebrovascular therapy. METHODS AND RESULTS: Using spatial modulation of S1P provision and signaling, we demonstrate a critical vascular protective role for endothelial S1P1 in the mouse brain. With an S1P1 signaling reporter, we reveal that abluminal polarization shields S1P1 from circulating endogenous and synthetic ligands after maturation of the blood-neural barrier, restricting homeostatic signaling to a subset of arteriolar endothelial cells. S1P1 signaling sustains hallmark endothelial functions in the naive brain and expands during ischemia by engagement of cell-autonomous S1P provision. Disrupting this pathway by endothelial cell-selective deficiency in S1P production, export, or the S1P1 receptor substantially exacerbates brain injury in permanent and transient models of ischemic stroke. By contrast, profound lymphopenia induced by loss of lymphocyte S1P1 provides modest protection only in the context of reperfusion. In the ischemic brain, endothelial cell S1P1 supports blood-brain barrier function, microvascular patency, and the rerouting of blood to hypoperfused brain tissue through collateral anastomoses. Boosting these functions by supplemental pharmacological engagement of the endothelial receptor pool with a blood-brain barrier penetrating S1P1-selective agonist can further reduce cortical infarct expansion in a therapeutically relevant time frame and independent of reperfusion. CONCLUSIONS: This study provides genetic evidence to support a pivotal role for the endothelium in maintaining perfusion and microvascular patency in the ischemic penumbra that is coordinated by S1P signaling and can be harnessed for neuroprotection with blood-brain barrier-penetrating S1P1 agonists.


Assuntos
Barreira Hematoencefálica/metabolismo , Artérias Cerebrais/metabolismo , Células Endoteliais/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Ataque Isquêmico Transitório/metabolismo , AVC Isquêmico/metabolismo , Lisofosfolipídeos/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Esfingosina/análogos & derivados , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/fisiopatologia , Artérias Cerebrais/efeitos dos fármacos , Artérias Cerebrais/patologia , Artérias Cerebrais/fisiopatologia , Circulação Cerebrovascular , Modelos Animais de Doenças , Células Endoteliais/patologia , Feminino , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Infarto da Artéria Cerebral Média/prevenção & controle , Ataque Isquêmico Transitório/patologia , Ataque Isquêmico Transitório/fisiopatologia , Ataque Isquêmico Transitório/prevenção & controle , AVC Isquêmico/patologia , AVC Isquêmico/fisiopatologia , AVC Isquêmico/prevenção & controle , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microcirculação , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/agonistas , Receptores de Esfingosina-1-Fosfato/genética , Grau de Desobstrução Vascular
20.
Ultrasound Med Biol ; 47(3): 759-768, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33358050

RESUMO

The goal of the work described here was to assess the performance of Doppler ultrasound (US) of the superior mesenteric artery (SMA) and celiac trunk (CT) in the evaluation of tumor response in female mice with ovarian peritoneal carcinomatosis treated either with bevacizumab or with carboplatin. Compared with untreated mice, carboplatin-treated mice had a lower weight (23.3 ± 2.0 vs. 27.9 ± 2.9 g, p < 0.001), peritoneal carcinomatosis index (PCI, 11 ± 3 vs. 28 ± 6, p < 0.001), Ki67-positive staining surfaces (p < 0.001), vascular density (p < 0.001), mean blood flow velocity (mBFVel) in the SMA (7.0 ± 1.4 vs. 10.9 ± 1.8 cm/s, p < 0.001) and CT (8.0 ± 1.8 vs. 14.3 ± 4.6 cm/s, p < 0.001) and no ascites. Weight and mBFVel were similar in bevacizumab-treated and untreated mice. The mBFVels in the SMA and CT correlated with the PCI used as an estimation of the tumor burden, R = 0.70 (p < 0.0001) and R = 0.65 (p < 0.0001), respectively. Doppler US allows non-invasive assessment of the effects of anticancer therapy in ovarian peritoneal carcinomatosis-induced mice.


Assuntos
Antineoplásicos/uso terapêutico , Bevacizumab/uso terapêutico , Carboplatina/uso terapêutico , Artéria Celíaca/diagnóstico por imagem , Artéria Mesentérica Superior/diagnóstico por imagem , Neoplasias Ovarianas/irrigação sanguínea , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Peritoneais/irrigação sanguínea , Neoplasias Peritoneais/tratamento farmacológico , Ultrassonografia Doppler , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Resultado do Tratamento , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA