Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5285, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37648685

RESUMO

Dynamin-1 is a large GTPase with an obligatory role in synaptic vesicle endocytosis at mammalian nerve terminals. Heterozygous missense mutations in the dynamin-1 gene (DNM1) cause a novel form of epileptic encephalopathy, with pathogenic mutations clustering within regions required for its essential GTPase activity. We reveal the most prevalent pathogenic DNM1 mutation, R237W, disrupts dynamin-1 enzyme activity and endocytosis when overexpressed in central neurons. To determine how this mutation impacted cell, circuit and behavioural function, we generated a mouse carrying the R237W mutation. Neurons from heterozygous mice display dysfunctional endocytosis, in addition to altered excitatory neurotransmission and seizure-like phenotypes. Importantly, these phenotypes are corrected at the cell, circuit and in vivo level by the drug, BMS-204352, which accelerates endocytosis. Here, we demonstrate a credible link between dysfunctional endocytosis and epileptic encephalopathy, and importantly reveal that synaptic vesicle recycling may be a viable therapeutic target for monogenic intractable epilepsies.


Assuntos
Epilepsia Resistente a Medicamentos , Dinamina I , Animais , Camundongos , Dinamina I/genética , Convulsões/genética , Modelos Animais de Doenças , Transporte Biológico , Mamíferos
2.
J Neurosci ; 42(8): 1618-1628, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34996816

RESUMO

Synaptic vesicle (SV) recycling is essential for the maintenance of neurotransmission, with a number of neurodevelopmental disorders linked to defects in this process. Fragile X syndrome (FXS) results from a loss of fragile X mental retardation protein (FMRP) encoded by the FMR1 gene. Hyperexcitability of neuronal circuits is a key feature of FXS, therefore we investigated whether SV recycling was affected by the absence of FMRP during increased neuronal activity. We revealed that primary neuronal cultures from male Fmr1 knock-out (KO) rats display a specific defect in activity-dependent bulk endocytosis (ADBE). ADBE is dominant during intense neuronal activity, and this defect resulted in an inability of Fmr1 KO neurons to sustain SV recycling during trains of high-frequency stimulation. Using a molecular replacement strategy, we also revealed that a human FMRP mutant that cannot bind BK channels failed to correct ADBE dysfunction in KO neurons, however this dysfunction was corrected by BK channel agonists. Therefore, FMRP performs a key role in sustaining neurotransmitter release via selective control of ADBE, suggesting intervention via this endocytosis mode may correct the hyperexcitability observed in FXS.SIGNIFICANCE STATEMENT Loss of fragile X mental retardation protein (FMRP) results in fragile X syndrome (FXS), however whether its loss has a direct role in neurotransmitter release remains a matter of debate. We demonstrate that neurons lacking FMRP display a specific defect in a mechanism that sustains neurotransmitter release during intense neuronal firing, called activity-dependent bulk endocytosis (ADBE). This discovery provides key insights into mechanisms of brain communication that occur because of loss of FMRP function. Importantly it also reveals ADBE as a potential therapeutic target to correct the circuit hyperexcitability observed in FXS.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Animais , Endocitose , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Masculino , Neurotransmissores/genética , Neurotransmissores/metabolismo , Ratos
3.
J Neurochem ; 160(3): 412-425, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34855215

RESUMO

Mutations in the ESCRT-III subunit CHMP2B cause frontotemporal dementia (FTD) and lead to impaired endolysosomal trafficking and lysosomal storage pathology in neurons. We investigated the effect of mutant CHMP2B on synaptic pathology, as ESCRT function was recently implicated in the degradation of synaptic vesicle (SV) proteins. We report here that expression of C-terminally truncated mutant CHMP2B results in a novel synaptopathy. This unique synaptic pathology is characterised by selective retention of presynaptic SV trafficking proteins in aged mutant CHMP2B transgenic mice, despite significant loss of postsynaptic proteins. Furthermore, ultrastructural analysis of primary cortical cultures from transgenic CHMP2B mice revealed a significant increase in the number of presynaptic endosomes, while neurons expressing mutant CHMP2B display defective SV recycling and alterations to functional SV pools. Therefore, we reveal how mutations in CHMP2B affect specific presynaptic proteins and SV recycling, identifying CHMP2B FTD as a novel synaptopathy. This novel synaptopathic mechanism of impaired SV physiology may be a key early event in multiple forms of FTD, since proteins that mediate the most common genetic forms of FTD all localise at the presynapse.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Proteínas do Tecido Nervoso/genética , Sinapses/patologia , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/patologia , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Córtex Cerebral/patologia , Modelos Animais de Doenças , Demência Frontotemporal/patologia , Camundongos , Camundongos Knockout , Cultura Primária de Células , Receptores Pré-Sinápticos/metabolismo
4.
J Neurochem ; 158(5): 1094-1109, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34327719

RESUMO

Fragile X mental retardation protein (FMRP) is a neuronal protein mediating multiple functions, with its absence resulting in one of the most common monogenic causes of autism, Fragile X syndrome (FXS). Analyses of FXS pathophysiology have identified a range of aberrations in synaptic signaling pathways and plasticity associated with group I metabotropic glutamate (mGlu) receptors. These studies, however, have mostly focused on the post-synaptic functions of FMRP and mGlu receptor activation, and relatively little is known about their presynaptic effects. Neurotransmitter release is mediated via multiple forms of synaptic vesicle (SV) fusion, each of which contributes to specific neuronal functions. The impacts of mGlu receptor activation and loss of FMRP on these SV fusion events remain unexplored. Here we combined electrophysiological and fluorescence imaging analyses on primary hippocampal cultures prepared from an Fmr1 knockout (KO) rat model. Compared to wild-type (WT) hippocampal neurons, KO neurons displayed an increase in the frequency of spontaneous excitatory post-synaptic currents (sEPSCs), as well as spontaneous SV fusion events. Pharmacological activation of mGlu receptors in WT neurons caused a similar increase in spontaneous SV fusion and sEPSC frequency. Notably, this increase in SV fusion was not observed when spontaneous activity was blocked using the sodium channel antagonist tetrodotoxin. Importantly, the effect of mGlu receptor activation on spontaneous SV fusion was occluded in Fmr1 KO neurons. Together, our results reveal that FMRP represses spontaneous presynaptic SV fusion, whereas mGlu receptor activation increases this event. This reciprocal control appears to be mediated via their regulation of intrinsic neuronal excitability.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/antagonistas & inibidores , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteína do X Frágil da Deficiência Intelectual/genética , Masculino , Fusão de Membrana/fisiologia , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Receptores de Glutamato Metabotrópico/genética , Vesículas Sinápticas/genética
5.
J Neurochem ; 157(2): 179-207, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32378740

RESUMO

The activity-dependent fusion, retrieval and recycling of synaptic vesicles is essential for the maintenance of neurotransmission. Until relatively recently it was believed that most mutations in genes that were essential for this process would be incompatible with life, because of this fundamental role. However, an ever-expanding number of mutations in this very cohort of genes are being identified in individuals with neurodevelopmental disorders, including autism, intellectual disability and epilepsy. This article will summarize the current state of knowledge linking mutations in presynaptic genes to neurodevelopmental disorders by sequentially covering the various stages of the synaptic vesicle life cycle. It will also discuss how perturbations of specific stages within this recycling process could translate into human disease. Finally, it will also provide perspectives on the potential for future therapy that are targeted to presynaptic function.


Assuntos
Terminações Pré-Sinápticas/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Animais , Endocitose/fisiologia , Exocitose/fisiologia , Humanos
6.
J Biol Chem ; 291(5): 2080-6, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26644474

RESUMO

Presynaptic calcium influx triggers synaptic vesicle (SV) exocytosis and modulates subsequent SV endocytosis. A number of calcium clearance mechanisms are present in central nerve terminals that regulate intracellular free calcium levels both during and after stimulation. During action potential stimulation, mitochondria rapidly accumulate presynaptic calcium via the mitochondrial calcium uniporter (MCU). The role of mitochondrial calcium uptake in modulating SV recycling has been debated extensively, but a definitive conclusion has not been achieved. To directly address this question, we manipulated the expression of the MCU channel subunit in primary cultures of neurons expressing a genetically encoded reporter of SV turnover. Knockdown of MCU resulted in ablation of activity-dependent mitochondrial calcium uptake but had no effect on the rate or extent of SV exocytosis. In contrast, the rate of SV endocytosis was increased in the absence of mitochondrial calcium uptake and slowed when MCU was overexpressed. MCU knockdown did not perturb activity-dependent increases in presynaptic free calcium, suggesting that SV endocytosis may be controlled by calcium accumulation and efflux from mitochondria in their immediate vicinity.


Assuntos
Cálcio/metabolismo , Endocitose/fisiologia , Mitocôndrias/metabolismo , Neurônios/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Potenciais de Ação , Animais , Canais de Cálcio/metabolismo , Células Cultivadas , Exocitose , Feminino , Hipocampo/metabolismo , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA