Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
2.
Neurosci Biobehav Rev ; 122: 38-65, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33359391

RESUMO

Hormone therapy, primarily progesterone and progestins, for central nervous system (CNS) disorders represents an emerging field of regenerative medicine. Following a failed clinical trial of progesterone for traumatic brain injury treatment, attention has shifted to the progestin Nestorone for its ability to potently and selectively transactivate progesterone receptors at relatively low doses, resulting in robust neurogenetic, remyelinating, and anti-inflammatory effects. That CNS disorders, including multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), spinal cord injury (SCI), and stroke, develop via demyelinating, cell death, and/or inflammatory pathological pathways advances Nestorone as an auspicious candidate for these disorders. Here, we assess the scientific and clinical progress over decades of research into progesterone, progestins, and Nestorone as neuroprotective agents in MS, ALS, SCI, and stroke. We also offer recommendations for optimizing timing, dosage, and route of the drug regimen, and identifying candidate patient populations, in advancing Nestorone to the clinic.


Assuntos
Doenças do Sistema Nervoso , Fármacos Neuroprotetores , Progestinas , Humanos , Doenças do Sistema Nervoso/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Progesterona , Progestinas/uso terapêutico , Receptores de Progesterona , Traumatismos da Medula Espinal
3.
CNS Neurosci Ther ; 26(6): 603-615, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32356605

RESUMO

Ischemic stroke and traumatic brain injury (TBI) comprise two particularly prevalent and costly examples of acquired brain injury (ABI). Following stroke or TBI, primary cell death and secondary cell death closely model disease progression and worsen outcomes. Mounting evidence indicates that long-term neuroinflammation extensively exacerbates the secondary deterioration of brain structure and function. Due to their immunomodulatory and regenerative properties, mesenchymal stem cell transplants have emerged as a promising approach to treating this facet of stroke and TBI pathology. In this review, we summarize the classification of cell death in ABI and discuss the prominent role of inflammation. We then consider the efficacy of bone marrow-derived mesenchymal stem/stromal cell (BM-MSC) transplantation as a therapy for these injuries. Finally, we examine recent laboratory and clinical studies utilizing transplanted BM-MSCs as antiinflammatory and neurorestorative treatments for stroke and TBI. Clinical trials of BM-MSC transplants for stroke and TBI support their promising protective and regenerative properties. Future research is needed to allow for better comparison among trials and to elaborate on the emerging area of cell-based combination treatments.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/terapia , Animais , Lesões Encefálicas Traumáticas/patologia , Morte Celular/fisiologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/terapia , Transplante de Células-Tronco Mesenquimais/tendências , Acidente Vascular Cerebral/patologia
5.
Cell Transplant ; 29: 963689720905805, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32098493

RESUMO

Middle cerebral artery occlusion in rodents remains a widely used model of ischemic stroke. Recently, we reported the occurrence of retinal ischemia in animals subjected to middle cerebral artery occlusion, owing in part to the circulatory juxtaposition of the ophthalmic artery to the middle cerebral artery. In this study, we examined the eye hemodynamics and visual deficits in middle cerebral artery occlusion-induced stroke rats. The brain and eye were evaluated by laser Doppler at baseline (prior to middle cerebral artery occlusion), during and after middle cerebral artery occlusion. Retinal function-relevant behavioral and histological outcomes were performed at 3 and 14 days post-middle cerebral artery occlusion. Laser Doppler revealed a typical reduction of at least 80% in the ipsilateral frontoparietal cortical area of the brain during middle cerebral artery occlusion compared to baseline, which returned to near-baseline levels during reperfusion. Retinal perfusion defects closely paralleled the timing of cerebral blood flow alterations in the acute stages of middle cerebral artery occlusion in adult rats, characterized by a significant blood flow defect in the ipsilateral eye with at least 90% reduction during middle cerebral artery occlusion compared to baseline, which was restored to near-baseline levels during reperfusion. Moreover, retinal ganglion cell density and optic nerve depth were significantly decreased in the ipsilateral eye. In addition, the stroke rats displayed eye closure. Behavioral performance in a light stimulus-mediated avoidance test was significantly impaired in middle cerebral artery occlusion rats compared to control animals. In view of visual deficits in stroke patients, closely monitoring of brain and retinal perfusion via laser Doppler measurements and examination of visual impairments may facilitate the diagnosis and the treatment of stroke, including retinal ischemia.


Assuntos
Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Nervo Óptico/patologia , Nervo Óptico/fisiopatologia , Retina/patologia , Retina/fisiopatologia , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Modelos Animais de Doenças , Imuno-Histoquímica , Ratos , Ratos Sprague-Dawley , Doenças Retinianas/patologia , Doenças Retinianas/fisiopatologia , Transtornos da Visão/fisiopatologia
6.
Neural Regen Res ; 15(7): 1179-1190, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31960797

RESUMO

Traumatic brain injury remains a global health crisis that spans all demographics, yet there exist limited treatment options that may effectively curtail its lingering symptoms. Traumatic brain injury pathology entails a progression from primary injury to inflammation-mediated secondary cell death. Sequestering this inflammation as a means of ameliorating the greater symptomology of traumatic brain injury has emerged as an attractive treatment prospect. In this review, we recapitulate and evaluate the important developments relating to regulating traumatic brain injury-induced neuroinflammation, edema, and blood-brain barrier disintegration through pharmacotherapy and stem cell transplants. Although these studies of stand-alone treatments have yielded some positive results, more therapeutic outcomes have been documented from the promising area of combined drug and stem cell therapy. Harnessing the facilitatory properties of certain pharmaceuticals with the anti-inflammatory and regenerative effects of stem cell transplants creates a synergistic effect greater than the sum of its parts. The burgeoning evidence in favor of combined drug and stem cell therapies warrants more elaborate preclinical studies on this topic in order to pave the way for later clinical trials.

7.
Brain Res ; 1729: 146643, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31901430

RESUMO

This special issue entitled "Mechanistic underpinnings of stem cell therapy for neurological disorders" brings together academicians, clinicians and industry partners with vested interest in the safe and effective translation of stem cell-based therapeutics from the laboratory to the clinic. Despite the scientific advances and limited clinical trials of stem cell therapy for neurological disorders, the mechanisms of action remain not fully understood. Here, we provide critical analyses of the therapeutic pathways postulated to mediate stem cell therapy. The views expressed here are based on scientific evidence, but also well-rationalized speculative hypotheses are encouraged in order to guide the field in exploiting the likely responsive pathways, as well as in exploring novel candidate targets which may open venues in optimizing the therapeutic effects of stem cell therapy. In the end, our goal is to coalesce the concerted efforts from stem cell researchers in probing the mechanistic triggers of cell-based treatments towards ensuring the safety and efficacy profiles of stem cell therapy.


Assuntos
Doenças do Sistema Nervoso Central/terapia , Transplante de Células-Tronco/métodos , Animais , Humanos
8.
Brain Hemorrhages ; 1(1): 24-33, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34056567

RESUMO

Hemorrhagic stroke is a global health crisis plagued by neuroinflammation in the acute and chronic phases. Neuroinflammation approximates secondary cell death, which in turn robustly contributes to stroke pathology. Both the physiological and behavioral symptoms of stroke correlate with various inflammatory responses in animal and human studies. That slowing the secondary cell death mediated by this inflammation may attenuate stroke pathology presents a novel treatment strategy. To this end, experimental therapies employing stem cell transplants support their potential for neuroprotection and neuroregeneration after hemorrhagic stroke. In this review, we evaluate experiments using different types of stem cell transplants as treatments for stroke-induced neuroinflammation. We also update this emerging area by examining recent preclinical and clinical trials that have deployed these therapies. While further investigations are warranted to solidify their therapeutic profile, the reviewed studies largely posit stem cells as safe and potent biologics for stroke, specifically owing to their mode of action for sequestering neuroinflammation and promoting neuroregenerative processes.

9.
CNS Neurosci Ther ; 26(6): 595-602, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31622035

RESUMO

Cell therapy for disorders of the central nervous system has progressed to a new level of clinical application. Various clinical studies are underway for Parkinson's disease, stroke, traumatic brain injury, and various other neurological diseases. Recent biotechnological developments in cell therapy have taken advantage of the technology of induced pluripotent stem (iPS) cells. The advent of iPS cells has provided a robust stem cell donor source for neurorestoration via transplantation. Additionally, iPS cells have served as a platform for the discovery of therapeutics drugs, allowing breakthroughs in our understanding of the pathology and treatment of neurological diseases. Despite these recent advances in iPS, adult tissue-derived mesenchymal stem cells remain the widely used donor for cell transplantation. Mesenchymal stem cells are easily isolated and amplified toward the cells' unique trophic factor-secretion property. In this review article, the milestone achievements of cell therapy for central nervous system disorders, with equal consideration on the present translational obstacles for clinic application, are described.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Doenças do Sistema Nervoso Central/terapia , Células-Tronco Pluripotentes Induzidas/transplante , Animais , Terapia Baseada em Transplante de Células e Tecidos/tendências , Doenças do Sistema Nervoso Central/diagnóstico , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/terapia , Transplante de Células-Tronco/métodos , Transplante de Células-Tronco/tendências , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/terapia
10.
Neural Regen Res ; 15(6): 1014-1018, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31823871

RESUMO

Stroke persists as a global health and economic crisis, yet only two interventions to reduce stroke-induced brain injury exist. In the clinic, many patients who experience an ischemic stroke often further suffer from retinal ischemia, which can inhibit their ability to make a functional recovery and may diminish their overall quality of life. Despite this, no treatments for retinal ischemia have been developed. In both cases, ischemia-induced mitochondrial dysfunction initiates a cell loss cascade and inhibits endogenous brain repair. Stem cells have the ability to transfer healthy and functional mitochondria not only ischemic neurons, but also to similarly endangered retinal cells, replacing their defective mitochondria and thereby reducing cell death. In this review, we encapsulate and assess the relationship between cerebral and retinal ischemia, recent preclinical advancements made using in vitro and in vivo retinal ischemia models, the role of mitochondrial dysfunction in retinal ischemia pathology, and the therapeutic potential of stem cell-mediated mitochondrial transfer. Furthermore, we discuss the pitfalls in classic rodent functional assessments and the potential advantages of laser Doppler as a metric of stroke progression. The studies evaluated in this review highlight stem cell-derived mitochondrial transfer as a novel therapeutic approach to both retinal ischemia and stroke. Furthermore, we posit the immense correlation between cerebral and retinal ischemia as an underserved area of study, warranting exploration with the aim of these treating injuries together.

11.
Transl Stroke Res ; 11(4): 831-836, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31797249

RESUMO

Recognizing that the pathologic progression of stroke is closely associated with aberrant immune responses, in particular the activation of peripheral leukocytes, namely T cells, we hypothesized that finding a treatment designed to inhibit neuroantigen-specific T cells and block cytotoxic monocytes and macrophages may render therapeutic effects in stroke. We previously reported that subcutaneous administration of partial MHC class II constructs promote behavioral and histological effects in stroke mice by centrally promoting a protective M2 macrophage/microglia phenotype in the CNS and peripherally reversing stroke-associated splenic atrophy. Here, we employed a second species using adult Sprague-Dawley rats exposed to the middle cerebral artery occlusion stroke model and observed similar therapeutic effects with a mouse partial MHC class II construct called DRmQ, as evidenced by reductions in stroke-induced motor deficits, infarcts, and peri-infarct cell loss and neuroinflammation. More importantly, we offered further evidence of peripheral sequestration of inflammation at the level of the spleen, which was characterized by attenuation of stroke-induced spleen weight reduction and TNF-ɑ and IL-6 upregulation. Collectively, these results satisfy the Stroke Therapy Academic Industry Roundtable criteria of testing a novel therapeutic in a second species and support the use of partial MHC class II constructs as a stroke therapeutic designed to sequester both central and peripheral inflammation responses in an effort to retard, or even halt, the neuroinflammation that exacerbates the secondary cell death in stroke.


Assuntos
Antígenos de Histocompatibilidade Classe II/administração & dosagem , Inflamação/prevenção & controle , Fármacos Neuroprotetores/administração & dosagem , Acidente Vascular Cerebral/prevenção & controle , Animais , Encefalite/prevenção & controle , Inflamação/complicações , Inflamação/metabolismo , Masculino , Ratos Sprague-Dawley , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia
12.
Stem Cells Transl Med ; 9(2): 203-220, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31738023

RESUMO

The present study used in vitro and in vivo stroke models to demonstrate the safety, efficacy, and mechanism of action of adult human bone marrow-derived NCS-01 cells. Coculture with NCS-01 cells protected primary rat cortical cells or human neural progenitor cells from oxygen glucose deprivation. Adult rats that were subjected to middle cerebral artery occlusion, transiently or permanently, and subsequently received intracarotid artery or intravenous transplants of NCS-01 cells displayed dose-dependent improvements in motor and neurological behaviors, and reductions in infarct area and peri-infarct cell loss, much better than intravenous administration. The optimal dose was 7.5 × 106 cells/mL when delivered via the intracarotid artery within 3 days poststroke, although therapeutic effects persisted even when administered at 1 week after stroke. Compared with other mesenchymal stem cells, NCS-01 cells ameliorated both the structural and functional deficits after stroke through a broad therapeutic window. NCS-01 cells secreted therapeutic molecules, such as basic fibroblast growth factor and interleukin-6, but equally importantly we observed for the first time the formation of filopodia by NCS-01 cells under stroke conditions, characterized by cadherin-positive processes extending from the stem cells toward the ischemic cells. Collectively, the present efficacy readouts and the novel filopodia-mediated mechanism of action provide solid lab-to-clinic evidence supporting the use of NCS-01 cells for treatment of stroke in the clinical setting.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , AVC Isquêmico/terapia , Transplante de Células-Tronco/métodos , Animais , Medula Óssea , Humanos , AVC Isquêmico/patologia , Masculino , Ratos
13.
Brain Circ ; 5(3): 97-100, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620654

RESUMO

This special issue of Brain Circulation presents cutting-edge research discoveries in stem cell-based regenerative medicine. Each article highlights recent advances in the fields of neurodegeneration and regenerative medicine. The selected contributions offer the groundwork for translating stem cell therapy to the clinic for treating central nervous system disorders. This issue is dedicated to Dr. Teng Ma, who passed away on May 18, 2019. Dr. Ma devoted a significant portion of his life in advancing biomedical engineering, including the utility of 3-dimensional bioreactor and magnetic resonance imaging, as a key element of the biological and therapeutic applications of stem cells for neurological disorders. Dr. Ma's research vision is celebrated in this compilation of ten articles on stem cell-based regenerative medicine.

14.
Brain Circ ; 5(3): 145-149, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620663

RESUMO

Stroke is one of the world's leading causes of mortality and morbidity. Greater understanding is required of the underlying relationships in ischemic brains in order to prevent stroke or to develop effective treatment. This review highlights new findings about the relationship of blood-brain barrier with astrocytes, pentraxin-3 (PTX3), and other factors expressed during or after ischemic stroke. These are discussed with respect to their ameliorative or deleterious effects. These effects are measured in vivo in animal models as well as in vitro in cell cultures. Evidence was found to suggest that astrocytes play a key role in stroke by expressing PTX3, which, in turn, enhances endothelial tightness, increases tight junction proteins, and inhibits vascular endothelial growth factor. The role of astrocytes and PTX3 is examined in relation to hypoxic stress and conditioning as well as mitochondrial transfer. Astrocytes and PTX3 are placed in the context of brain circulation and related areas.

15.
CNS Neurol Disord Drug Targets ; 18(9): 687-694, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31642796

RESUMO

Here, we summarized recent advances in laboratory and clinical research on gut microbiome. The goal is to highlight recent discoveries on the biology and behavioral manifestations of gut microbiomes under normal and pathologic conditions. With this new scientific knowledge, we wish to cultivate cross-fertilization of science across multi-disciplines in the hopes of exploiting the gut microbiome as a key component of human development and its dysbiosis may signal pathological alterations that can be therapeutically targeted for regenerative medicine. In the end, we identify innovative research avenues that will merit from collaborations across biomedical disciplines that may facilitate the development of gut microbiome-based biomarkers and therapeutics. Gut microbiome stands as a core research area that transcends pediatric and nursing care, cancer biology, neurodegenerative disorders, cardiac function and diseases, among many other basic science and clinical arenas.


Assuntos
Doenças do Sistema Nervoso Central/metabolismo , Disbiose/metabolismo , Microbioma Gastrointestinal/fisiologia , Inflamação/metabolismo , Animais , Humanos , Modelos Animais , Doenças Neurodegenerativas/metabolismo
17.
Stem Cell Rev Rep ; 15(5): 690-702, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31317505

RESUMO

Pharmaceuticals and cell-based regenerative medicine for Parkinson's disease (PD) offer palliative relief but do not arrest the disease progression. Cell therapy has emerged as an experimental treatment, but current cell sources such as human umbilical cord blood (hUCB) stem cells display only partial recapitulation of mature dopaminergic neuron phenotype and function. Nonetheless, stem cell grafts ameliorate PD-associated histological and behavioral deficits likely through stem cell graft-secreted therapeutic substances. We recently demonstrated the potential of hUCB-derived plasma in enhancing motor capabilities and gastrointestinal function, as well as preventing dopaminergic neuronal cell loss, in an 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP) rodent model of PD. Recognizing the translational need to test in another PD model, we now examined here the effects of an intravenously transplanted combination of hUCB and plasma into the 6-hydroxydopamine (6-OHDA) lesioned adult rats. Animals received three separate doses of 4 × 106 hUCB cells with plasma beginning at 7 days after stereotaxic 6-OHDA lesion, then behaviorally and immunohistochemically evaluated over 56 days post-lesion. Whereas vehicle-treated lesioned animals exhibited the typical 6-OHDA neurobehavioral symptoms, hUCB and plasma-treated lesioned animals showed significant attenuation of motor function, gut motility, and nigral dopaminergic neuronal survival, combined with diminished pro-inflammatory microbiomes not only in the nigra, but also in the gut. Altogether these data support a regenerative medicine approach for PD by sequestering inflammation and neurotoxicity through correction of gut dysbiosis.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Microbioma Gastrointestinal , Inflamação/prevenção & controle , Intoxicação por MPTP/terapia , Fármacos Neuroprotetores/administração & dosagem , Medicina Regenerativa , Cordão Umbilical/citologia , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/citologia , Inflamação/etiologia , Inflamação/patologia , Intoxicação por MPTP/etiologia , Intoxicação por MPTP/patologia , Masculino , Transtornos Motores/etiologia , Transtornos Motores/patologia , Transtornos Motores/prevenção & controle , Ratos , Ratos Sprague-Dawley , Substância Negra/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA