Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Comput Med Imaging Graph ; 88: 101831, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33482430

RESUMO

In the WHO glioma classification guidelines grade (glioblastoma versus lower-grade glioma), IDH mutation and 1p/19q co-deletion status play a central role as they are important markers for prognosis and optimal therapy planning. Currently, diagnosis requires invasive surgical procedures. Therefore, we propose an automatic segmentation and classification pipeline based on routinely acquired pre-operative MRI (T1, T1 postcontrast, T2 and/or FLAIR). A 3D U-Net was designed for segmentation and trained on the BraTS 2019 training dataset. After segmentation, the 3D tumor region of interest is extracted from the MRI and fed into a CNN to simultaneously predict grade, IDH mutation and 1p19q co-deletion. Multi-task learning allowed to handle missing labels and train one network on a large dataset of 628 patients, collected from The Cancer Imaging Archive and BraTS databases. Additionally, the network was validated on an independent dataset of 110 patients retrospectively acquired at the Ghent University Hospital (GUH). Segmentation performance calculated on the BraTS validation set shows an average whole tumor dice score of 90% and increased robustness to missing image modalities by randomly excluding input MRI during training. Classification area under the curve scores are 93%, 94% and 82% on the TCIA test data and 94%, 86% and 87% on the GUH data for grade, IDH and 1p19q status respectively. We developed a fast, automatic pipeline to segment glioma and accurately predict important (molecular) markers based on pre-therapy MRI.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Glioma/diagnóstico por imagem , Glioma/genética , Humanos , Isocitrato Desidrogenase/genética , Imageamento por Ressonância Magnética , Mutação , Estudos Retrospectivos
2.
Acad Radiol ; 27(10): 1449-1455, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32741657

RESUMO

RATIONALE AND OBJECTIVES: Mounting evidence supports the role of pulmonary hemodynamic alternations in the pathogenesis of COVID-19. Previous studies have demonstrated that changes in pulmonary blood volumes measured on computed tomography (CT) are associated with histopathological markers of pulmonary vascular pruning, suggesting that quantitative CT analysis may eventually be useful in the assessment pulmonary vascular dysfunction more broadly. MATERIALS AND METHODS: Building upon previous work, automated quantitative CT measures of small blood vessel volume and pulmonary vascular density were developed. Scans from 103 COVID-19 patients and 107 healthy volunteers were analyzed and their results compared, with comparisons made both on lobar and global levels. RESULTS: Compared to healthy volunteers, COVID-19 patients showed significant reduction in BV5 (pulmonary blood volume contained in blood vessels of <5 mm2) expressed as BV5/(total pulmonary blood volume; p < 0.0001), and significant increases in BV5-10 and BV 10 (pulmonary blood volumes contained in vessels between 5 and 10 mm2 and above 10 mm2, respectively, p < 0.0001). These changes were consistent across lobes. CONCLUSION: COVID-19 patients display striking anomalies in the distribution of blood volume within the pulmonary vascular tree, consistent with increased pulmonary vasculature resistance in the pulmonary vessels below the resolution of CT.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Pulmão , Pandemias , Pneumonia Viral , COVID-19 , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2 , Tomografia Computadorizada por Raios X
3.
Comput Biol Med ; 98: 39-47, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29763764

RESUMO

Brain tumour segmentation in medical images is a very challenging task due to the large variety in tumour shape, position, appearance, scanning modalities and scanning parameters. Most existing segmentation algorithms use information from four different MRI-sequences, but since this is often not available, there is need for a method able to delineate the different tumour tissues based on a minimal amount of data. We present a novel approach using a Random Forests model combining voxelwise texture and abnormality features on a contrast-enhanced T1 and FLAIR MRI. We transform the two scans into 275 feature maps. A random forest model next calculates the probability to belong to 4 tumour classes or 5 normal classes. Afterwards, a dedicated voxel clustering algorithm provides the final tumour segmentation. We trained our method on the BraTS 2013 database and validated it on the larger BraTS 2017 dataset. We achieve median Dice scores of 40.9% (low-grade glioma) and 75.0% (high-grade glioma) to delineate the active tumour, and 68.4%/80.1% for the total abnormal region including edema. Our fully automated brain tumour segmentation algorithm is able to delineate contrast enhancing tissue and oedema with high accuracy based only on post-contrast T1-weighted and FLAIR MRI, whereas for non-enhancing tumour tissue and necrosis only moderate results are obtained. This makes the method especially suitable for high-grade glioma.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Algoritmos , Encéfalo/diagnóstico por imagem , Bases de Dados Factuais , Glioma/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA