Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(6): e30, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346683

RESUMO

The CRISPR/Cas system has emerged as a powerful tool for genome editing in metabolic engineering and human gene therapy. However, locating the optimal site on the chromosome to integrate heterologous genes using the CRISPR/Cas system remains an open question. Selecting a suitable site for gene integration involves considering multiple complex criteria, including factors related to CRISPR/Cas-mediated integration, genetic stability, and gene expression. Consequently, identifying such sites on specific or different chromosomal locations typically requires extensive characterization efforts. To address these challenges, we have developed CRISPR-COPIES, a COmputational Pipeline for the Identification of CRISPR/Cas-facilitated intEgration Sites. This tool leverages ScaNN, a state-of-the-art model on the embedding-based nearest neighbor search for fast and accurate off-target search, and can identify genome-wide intergenic sites for most bacterial and fungal genomes within minutes. As a proof of concept, we utilized CRISPR-COPIES to characterize neutral integration sites in three diverse species: Saccharomyces cerevisiae, Cupriavidus necator, and HEK293T cells. In addition, we developed a user-friendly web interface for CRISPR-COPIES (https://biofoundry.web.illinois.edu/copies/). We anticipate that CRISPR-COPIES will serve as a valuable tool for targeted DNA integration and aid in the characterization of synthetic biology toolkits, enable rapid strain construction to produce valuable biochemicals, and support human gene and cell therapy applications.


Assuntos
Sistemas CRISPR-Cas , Biologia Computacional , Simulação por Computador , Edição de Genes , Humanos , Sistemas CRISPR-Cas/genética , Células HEK293 , Saccharomyces cerevisiae/genética , Biologia Computacional/métodos , Betaproteobacteria/genética , Interface Usuário-Computador
2.
Metab Eng ; 81: 70-87, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040110

RESUMO

The remarkable metabolic diversity observed in nature has provided a foundation for sustainable production of a wide array of valuable molecules. However, transferring the biosynthetic pathway to the desired host often runs into inherent failures that arise from intermediate accumulation and reduced flux resulting from competing pathways within the host cell. Moreover, the conventional trial and error methods utilized in pathway optimization struggle to fully grasp the intricacies of installed pathways, leading to time-consuming and labor-intensive experiments, ultimately resulting in suboptimal yields. Considering these obstacles, there is a pressing need to explore the enzyme expression landscape and identify the optimal pathway configuration for enhanced production of molecules. This review delves into recent advancements in pathway engineering, with a focus on multiplex experimentation and machine learning techniques. These approaches play a pivotal role in overcoming the limitations of traditional methods, enabling exploration of a broader design space and increasing the likelihood of discovering optimal pathway configurations for enhanced production of molecules. We discuss several tools and strategies for pathway design, construction, and optimization for sustainable and cost-effective microbial production of molecules ranging from bulk to fine chemicals. We also highlight major successes in academia and industry through compelling case studies.


Assuntos
Vias Biossintéticas , Aprendizado de Máquina , Engenharia Metabólica/métodos
3.
Nat Commun ; 14(1): 5616, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699958

RESUMO

Chromatin boundary elements contribute to the partitioning of mammalian genomes into topological domains to regulate gene expression. Certain boundary elements are adopted as DNA insulators for safe and stable transgene expression in mammalian cells. These elements, however, are ill-defined and less characterized in the non-coding genome, partially due to the lack of a platform to readily evaluate boundary-associated activities of putative DNA sequences. Here we report SHIELD (Site-specific Heterochromatin Insertion of Elements at Lamina-associated Domains), a platform tailored for the high-throughput screening of barrier-type DNA elements in human cells. SHIELD takes advantage of the high specificity of serine integrase at heterochromatin, and exploits the natural heterochromatin spreading inside lamina-associated domains (LADs) for the discovery of potent barrier elements. We adopt SHIELD to evaluate the barrier activity of 1000 DNA elements in a high-throughput manner and identify 8 candidates with barrier activities comparable to the core region of cHS4 element in human HCT116 cells. We anticipate SHIELD could facilitate the discovery of novel barrier DNA elements from the non-coding genome in human cells.


Assuntos
Besouros , Ensaios de Triagem em Larga Escala , Animais , Humanos , Heterocromatina/genética , Cromatina/genética , Células HCT116 , Mamíferos
4.
Metab Eng ; 78: 200-208, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37343658

RESUMO

The robust nature of the non-conventional yeast Issatchenkia orientalis allows it to grow under highly acidic conditions and therefore, has gained increasing interest in producing organic acids using a variety of carbon sources. Recently, the development of a genetic toolbox for I. orientalis, including an episomal plasmid, characterization of multiple promoters and terminators, and CRISPR-Cas9 tools, has eased the metabolic engineering efforts in I. orientalis. However, multiplex engineering is still hampered by the lack of efficient multicopy integration tools. To facilitate the construction of large, complex metabolic pathways by multiplex CRISPR-Cas9-mediated genome editing, we developed a bioinformatics pipeline to identify and prioritize genome-wide intergenic loci and characterized 47 gRNAs located in 21 intergenic regions. These loci are screened for guide RNA cutting efficiency, integration efficiency of a gene cassette, the resulting cellular fitness, and GFP expression level. We further developed a landing pad system using components from these well-characterized loci, which can aid in the integration of multiple genes using single guide RNA and multiple repair templates of the user's choice. We have demonstrated the use of the landing pad for simultaneous integrations of 2, 3, 4, or 5 genes to the target loci with efficiencies greater than 80%. As a proof of concept, we showed how the production of 5-aminolevulinic acid can be improved by integrating five copies of genes at multiple sites in one step. We have further demonstrated the efficiency of this tool by constructing a metabolic pathway for succinic acid production by integrating five gene expression cassettes using a single guide RNA along with five different repair templates, leading to the production of 9 g/L of succinic acid in batch fermentations. This study demonstrates the effectiveness of a single gRNA-mediated CRISPR platform to build complex metabolic pathways in a non-conventional yeast. This landing pad system will be a valuable tool for the metabolic engineering of I. orientalis.


Assuntos
Sistemas CRISPR-Cas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Edição de Genes/métodos , Succinatos
5.
Cell Syst ; 14(8): 633-644, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37224814

RESUMO

Directed evolution has become one of the most successful and powerful tools for protein engineering. However, the efforts required for designing, constructing, and screening a large library of variants can be laborious, time-consuming, and costly. With the recent advent of machine learning (ML) in the directed evolution of proteins, researchers can now evaluate variants in silico and guide a more efficient directed evolution campaign. Furthermore, recent advancements in laboratory automation have enabled the rapid execution of long, complex experiments for high-throughput data acquisition in both industrial and academic settings, thus providing the means to collect a large quantity of data required to develop ML models for protein engineering. In this perspective, we propose a closed-loop in vitro continuous protein evolution framework that leverages the best of both worlds, ML and automation, and provide a brief overview of the recent developments in the field.


Assuntos
Evolução Molecular Direcionada , Proteínas , Proteínas/metabolismo , Engenharia de Proteínas , Automação , Aprendizado de Máquina
6.
Chem Rev ; 123(9): 5521-5570, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-36584306

RESUMO

Metabolic engineering aims to improve the production of economically valuable molecules through the genetic manipulation of microbial metabolism. While the discipline is a little over 30 years old, advancements in metabolic engineering have given way to industrial-level molecule production benefitting multiple industries such as chemical, agriculture, food, pharmaceutical, and energy industries. This review describes the design, build, test, and learn steps necessary for leading a successful metabolic engineering campaign. Moreover, we highlight major applications of metabolic engineering, including synthesizing chemicals and fuels, broadening substrate utilization, and improving host robustness with a focus on specific case studies. Finally, we conclude with a discussion on perspectives and future challenges related to metabolic engineering.


Assuntos
Indústrias , Engenharia Metabólica
7.
Nat Commun ; 13(1): 2697, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35577775

RESUMO

Plasmids are used extensively in basic and applied biology. However, design and construction of plasmids, specifically the ones carrying complex genetic information, remains one of the most time-consuming, labor-intensive, and rate-limiting steps in performing sophisticated biological experiments. Here, we report the development of a versatile, robust, automated end-to-end platform named PlasmidMaker that allows error-free construction of plasmids with virtually any sequences in a high throughput manner. This platform consists of a most versatile DNA assembly method using Pyrococcus furiosus Argonaute (PfAgo)-based artificial restriction enzymes, a user-friendly frontend for plasmid design, and a backend that streamlines the workflow and integration with a robotic system. As a proof of concept, we used this platform to generate 101 plasmids from six different species ranging from 5 to 18 kb in size from up to 11 DNA fragments. PlasmidMaker should greatly expand the potential of synthetic biology.


Assuntos
DNA , Pyrococcus furiosus , DNA/genética , Enzimas de Restrição do DNA/genética , Plasmídeos/genética , Pyrococcus furiosus/genética , Biologia Sintética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA