Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(82): 11655-11672, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39297734

RESUMO

Organic and metal-free molecules with piezoelectric and ferroelectric properties have gained wide interest for their applications in the domain of mechanical energy harvesting due to their desirable properties such as light weight, thermal stability, mechanical flexibility, feasibility to achieve high Curie temperatures, and ease of synthesis. However, the understanding and design of these materials for piezoelectric energy harvesting applications is still in its early stages. This review paper presents a comprehensive overview of the fundamental characterization of piezoelectricity for a range of organic ferro- and piezoelectric materials and their composites. It also discusses the limitations of traditional piezoelectric materials and highlights the advantages of organic materials in this area in the introduction part. In addition, the paper provides a detailed description of peptide-based and other biomolecular piezoelectric materials as a bio-friendly alternative to current materials. This perspective aims to guide researchers in designing functional organic materials and composites for practical mechanical energy harvesting applications and to highlight current limitations and future perspectives in this emerging area of research.

2.
Inorg Chem ; 63(40): 18788-18796, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39308143

RESUMO

Chiral recognition and separation studies are of paramount importance in research in view of their applications in asymmetric catalysis and substrate recognition in biological processes. The efficiencies of these processes are governed by the subtle differences in noncovalent interactions between the host and guest molecules. Hexakis(organoamino)phosphazenes are versatile building blocks for host-guest chemistry for their ability to act as both the donor and the acceptor of H-bonds. Herein, we report an enantiomeric pair of cyclotriphosphazenes [P3N3(NHR*)6], [R* = (R)-(CH(CH3)Ph)] (1-R) and [(S)-(CH(CH3)Ph)] (1-S), with chiral α-methylbenzylamino substituents. The chiral recognition capabilities of its R-enantiomer were further probed for several chiral organic compounds containing a range of functional groups. Among these, a remarkable guest selectivity (ξ) value of 2506 was observed for binol (BOL) in favor of its R-enantiomer. DFT-optimized structures of the host-guest pairs suggest that the multiple noncovalent interactions between the molecules in the two unique types of binding sites at the phosphazenes play a crucial role in the observed high binding selectivities.

3.
Angew Chem Int Ed Engl ; 63(44): e202406358, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39073222

RESUMO

The synthesis and guest recognition properties of a neutral Pd24-cubic cage, [{Pd3(NiPr)3PO}8(µ2-Cl)24] 1 are reported. The formation of the cubical assembly takes place by an exclusive one-pot ligand-assisted pathway directed by an oximido linker. The initial coordination of the oximido ligand pre-organizes the [Pd3(NiPr)3PO]3+ polyhedral building units into a tetrameric intermediate, which then transforms into an oximido-tethered tetrahedral assembly and to the cubical cage 1 in the presence of chloride ions. In the absence of the directing oximido linker, no cage formation was observed, and the Pd6-precursor was found to undergo self-condensation, giving rise to a new pentameric polyhedral cluster, [Pd5{(NiPr)3PO}2(OAc)2(OH)2] 2. The central cavity of the cube has been probed for guest encapsulation studies, which shows a high binding with phenolic guest molecules with association constants of the order of 104-105 M-1. The favorable formation of host-guest complexes was attributed to the strong hydrogen bonding interactions between the host and guest functional groups.

4.
Inorg Chem ; 63(20): 9245-9251, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38700990

RESUMO

Halogenobismuthate(III) compounds are of recent interest because of their low toxicity and distinct electrical properties. The utility of these materials as ferroelectrics for piezoelectric energy harvesters is still in its early stages. Herein, we report a hybrid ammonium halogenobismuthate(III) [BPBrDMA]2·[BiBr5], crystallizing in a ferroelectrically active polar noncentrosymmetric Pna21 space group. Its noncentrosymmetric structure was confirmed by the detection of the second harmonic generation response. The ferroelectric P-E hysteresis loop measurements on the thin film sample of [BPBrDMA]2·[BiBr5] gave a saturation polarization (Ps) of 5.72 µC cm-2. The piezoresponse force microscopy analysis confirmed its ferroelectric and piezoelectric nature, showing characteristic domain structures and signature hysteresis and butterfly loops. The piezoelectric energy harvesting attributes of [BPBrDMA]2·[BiBr5] were further probed on its polylactic acid (PLA) composites. The 15 wt % [BPBrDMA]2·[BiBr5]-PLA polymer composite resulted in a high output voltage of 26.2 V and power density of 15.47 µW cm-2. The energy harvested from this device was further utilized for charging a 10 µF capacitor within 3 min.

5.
ACS Appl Mater Interfaces ; 16(20): 26406-26416, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38725337

RESUMO

Ionic cocrystals with hydrogen bonding can form exciting materials with enhanced optical and electronic properties. We present a highly moisture-stable ammonium salt cocrystal [CH3C6H4CH(CH3)NH2][CH3C6H4CH(CH3)NH3][PF6] ((p-TEA)(p-TEAH)·PF6) crystallizing in the polar monoclinic C2 space group. The asymmetry in (p-TEA)(p-TEAH)·PF6 was induced by its chiral substituents, while the polar order and structural stability were achieved by using the octahedral PF6- anion and the consequent formation of salt cocrystal. The ferroelectric properties of (p-TEA)(p-TEAH)·PF6 were confirmed through P-E loop measurements. Piezoresponse force microscopy (PFM) enabled the visualization of its domain structure with characteristic "butterfly" and hysteresis loops associated with ferro- and piezoelectric properties. Notably, (p-TEA)(p-TEAH)·PF6 exhibits a large electrostrictive coefficient (Q33) value of 2.02 m4 C-2, higher than those found for ceramic-based materials and comparable to that of polyvinylidene difluoride. Furthermore, the composite films of (p-TEA)(p-TEAH)·PF6 with polycaprolactone (PCL) polymer and its gyroid-shaped 3D-printed composite scaled-up device, 3DP-Gy, were prepared and evaluated for piezoelectric energy-harvesting functionality. A high output voltage of 22.8 V and a power density of 118.5 µW cm-3 have been recorded for the 3DP-Gy device. Remarkably, no loss in voltage outputs was observed for the (p-TEA)(p-TEAH)·PF6 devices even after exposure to 99% relative humidity, showcasing their utility under extremely humid conditions.

6.
Angew Chem Int Ed Engl ; 63(18): e202400366, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38446492

RESUMO

Within the burgeoning field of electronic materials, B-N Lewis acid-base pairs, distinguished by their partial charge distribution across boron and nitrogen centers, represent an underexplored class with significant potential. These materials exhibit inherent dipoles and are excellent candidates for ferroelectricity. However, the challenge lies in achieving the optimal combination of hard-soft acid-base pairs to yield B-N adducts with stable dipoles. Herein, we present an enantiomeric pair of B-N adducts [R/SC6H5CH(CH3)NH2BF3] (R/SMBA-BF3) crystallizing in the polar monoclinic P21 space group. The ferroelectric measurements on RMBA-BF3 gave a rectangular P-E hysteresis loop with a remnant polarization of 7.65 µC cm-2, a value that aligns with the polarization derived from the extensive density-functional theory computations. The PFM studies on the drop-casted film of RMBA-BF3 further corroborate the existence of ferroelectric domains, displaying characteristic amplitude-bias butterfly and phase-bias hysteresis loops. The piezoelectric nature of the RMBA-BF3 was confirmed by its direct piezoelectric coefficient (d33) value of 3.5 pC N-1 for its pellet. The piezoelectric energy harvesting applications on the sandwich devices fabricated from the as-made crystals of RMBA-BF3 gave an open circuit voltage (VPP) of 6.2 V. This work thus underscores the untapped potential of B-N adducts in the field of piezoelectric energy harvesting.

7.
Inorg Chem ; 62(47): 19375-19381, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37939248

RESUMO

Chiral coordination cages have emerged as an efficient platform for enantioselective processes via host-guest interactions. Here, we report an enantiomeric pair of tetrahedral cages of formula [(Pd3[PO(N(*CH(CH3)Ph)3])4(C4O4)6] supported by chiral tris(imido)phosphate trianions and squarate (C4O4)2- linkers. These cages exhibit unusual coordination isomerism for Pd(II)-linker bonds compared with the other Pd(II) cages of this family. Further, they were employed for the recognition and separation of small chiral molecules containing various functionalities. High enantioselectivities of 67 and 41 were found in the case of R-4-hydroxydihydrofuran-2(3H)-one and S-epichlorohydrin, recognized by the R-isomer of the cage. Chiral separation studies showed remarkable enantiomeric excess values of 93 and 85% for S-epichlorohydrin and R-4-benzyl-2-oxazolidinone, respectively, from their racemic mixtures. These studies showcase the potential of coordination cages for enantioselective applications.

8.
Small ; 19(46): e2300792, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37485599

RESUMO

Cyclophosphazenes offer a robust and easily modifiable platform for a diverse range of functional systems that have found applications in a wide variety of areas. Herein, for the first time, it reports an organophosphazene-based supramolecular ferroelectric [(PhCH2 NH)6 P3 N3 Me]I, [PMe]I. The compound crystallizes in the polar space group Pc and its thin-film sample exhibits remnant polarization of 5 µC cm-2 . Vector piezoresponse force microscopy (PFM) measurements indicated the presence of multiaxial polarization. Subsequently, flexible composites of [PMe]I are fabricated for piezoelectric energy harvesting applications using thermoplastic polyurethane (TPU) as the matrix. The highest open-circuit voltages of 13.7 V and the maximum power density of 34.60 µW cm-2 are recorded for the poled 20 wt.% [PMe]I/TPU device. To understand the molecular origins of the high performance of [PMe]I-based mechanical energy harvesting devices, piezoelectric charge tensor values are obtained from DFT calculations of the single crystal structure. These indicate that the mechanical stress-induced distortions in the [PMe]I crystals are facilitated by the high flexibility of the layered supramolecular assembly.

9.
Mater Horiz ; 10(8): 3153-3161, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37227322

RESUMO

Three-dimensional printing (3DP) is an emerging technology to fabricate complex architectures, necessary to realize state-of-the-art flexible and wearable electronic devices. In this regard, top-performing devices containing organic ferro- and piezoelectric compounds are desired to circumvent significant shortcomings of conventional piezoceramics, e.g. toxicity and high-temperature device processibility. Herein, we report on a 3D-printed composite of a chiral ferroelectric organic salt {[Me3CCH(Me)NH3][BF4]} (1) with a biodegradable polycaprolactone (PCL) polymer that serves as a highly efficient piezoelectric nanogenerator (PENG). The ferroelectric property of 1 originates from its polar tetragonal space group P42, verified by P-E loop measurements. The ferroelectric domain characteristics of 1 were further probed by piezoresponse force microscopy (PFM), which gave characteristic 'butterfly' and hysteresis loops. The PFM amplitude vs. drive voltage measurements gave a relatively high magnitude of the converse piezoelectric coefficient for 1. PCL polymer composites with various weight percentages (wt%) of 1 were prepared and subjected to piezoelectric energy harvesting tests, which gave a maximum open-circuit voltage of 36.2 V and a power density of 48.1 µW cm-2 for the 10 wt% 1-PCL champion device. Furthermore, a gyroid-shaped 3D-printed 10 wt% 1-PCL composite was fabricated to test its practical utility, which gave an excellent output voltage of 41 V and a power density of 56.8 µW cm-2. These studies promise the potential of simple organic compounds for building PENG devices using advanced manufacturing technologies.

10.
Inorg Chem ; 62(10): 4035-4042, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36857772

RESUMO

The encapsulation of icosahedral closo-dicarbadodecaborane (o-, m-, and p-carboranes, Cb) as guest molecules at the intrinsic cavities of the three isostructural tetrahedral cages [{Pd3(NiPr)3PO}4(Cl-AN)6] (1), [{Pd3(NiPr)3PO}4(Br-AN)6] (2), and [{Pd3(NiPr)3PO}4(H-AN)6] (3) was studied. The formation of definite host-guest assemblies was probed with mass spectrometry, IR, and NMR spectral analysis. 2D DOSY 1H NMR of the Cb⊂Cage systems showed similar diffusion coefficient (D) values for the host and guest species, signifying the encapsulation of these guests inside the cage assemblies. The hydrodynamic radius (RH) derived from the D values of the host and guest species further confirmed the encapsulation of the Cb isomers at the cage pockets. The single-molecule energy optimization of the host-guest assemblies indicated the preferential binding of o-Cb as a guest inside the cages (1-3). The stabilization of these Cb guests inside these cages was further attributed to various possible nonclassical C-H···X-type interactions.

11.
Chem Commun (Camb) ; 59(20): 2919-2922, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36799201

RESUMO

The ferroelectric behaviour of an octahedral cage [[Ni6(H2O)12(TPTA)8]·(NO3)12·36H2O] (1) exhibiting high remnant polarization of 25.31 µC cm-2 is discovered. For the first time, clear domain structures and the characteristic electromechanical responses are demonstrated using piezoresponsive force microscopy for a thin film of 1. Owing to its mechanical energy conversion capability, polymer composites of 1 were employed as efficient piezoelectric nanogenerators.

12.
Angew Chem Int Ed Engl ; 62(3): e202214984, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36408916

RESUMO

Hybrid materials possessing piezo- and ferroelectric properties emerge as excellent alternatives to conventional piezoceramics due to their merits of facile synthesis, lightweight nature, ease of fabrication and mechanical flexibility. Inspired by the structural stability of aminophosphonium compounds, here we report the first A3 BX6 type cyanometallate [Ph2 (i PrNH)2 P]3 [Fe(CN)6 ] (1), which shows a ferroelectric saturation polarization (Ps ) of 3.71 µC cm-2 . Compound 1 exhibits a high electrostrictive coefficient (Q33 ) of 0.73 m4  C-2 , far exceeding those of piezoceramics (0.034-0.096 m4  C-2 ). Piezoresponse force microscopy (PFM) analysis demonstrates the polarization switching and domain structure of 1 further confirming its ferroelectric nature. Furthermore, thermoplastic polyurethane (TPU) polymer composite films of 1 were prepared and employed as piezoelectric nanogenerators. Notably, the 15 wt % 1-TPU device gave a maximum output voltage of 13.57 V and a power density of 6.03 µW cm-2 .

13.
Inorg Chem ; 62(5): 1855-1863, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35623320

RESUMO

A primary criterion for the design of polyhedral metal-organic cages is the requirement of geometrically matched pairs of metal ions and ligand moieties. However, understanding the pathway it takes to reach the final polyhedral structure can provide more insights into the self-assembly process and improved design strategies. In this regard, we report two neutral tetrahedral cages with the formulas {[Pd3(NiPr)3PO]4(L1)6} (1-TD) and {[Pd3(NiPr)3PO]4(L2)6} (2-TD) starting from the acetate-bridged cluster {[Pd3(NiPr)3PO]2(OAc)2(OH)}2·2(CH3)2SO (HEXA-Pd) and the respective oxamide precursors (L1H2: [C2(NH2)2O2]) and (L2H2: (C2(NHMe)2O2]). When subtle variations in the reaction conditions were made, two new tetrameric Pd12 assemblies, {[Pd3(NiPr)3PO]4(L1)2(OAc)4(OMe)4} (1-TM) and {[Pd3(NiPr)3PO]4(L2)2(OAc)4(OMe)4} (2-TM), were obtained from the same precursors. Detailed investigations using NMR, mass spectrometry, X-ray crystallography, and computational studies indicate that the macrocyclic complexes 1-TM and 2-TM are the reaction intermediates involved in the formation of the tetrahedral cages 1-TD and 2-TD, respectively. Moreover, the tetrahedral cages 1-TD and 2-TD exhibited intrinsic cavities of volume ∼85 Å3. Guest encapsulation studies revealed that the cage 1-TD can encapsulate a wide range of guest molecules such as CH2Cl2, CHCl3, CCl4, C6H6, and C6H5F. Interestingly, 1-TD was shown to exhibit a preferential binding of C6H5F and C6H6 over other halogenated guest molecules, as determined from NMR titrations and computational studies.

14.
Chem Sci ; 13(42): 12533-12539, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36382295

RESUMO

The isolation of carbon-centered diradicals is always challenging due to synthetic difficulties and their limited stability. Herein we report the synthesis of a trans-1,4-cyclohexylene bridged bis-NHC-CAAC dimer derived thermally stable dicationic diradical. The diradical character of this compound was confirmed by EPR spectroscopy. The variable temperature EPR study suggests the singlet state to be marginally more stable than the triplet state (2J = -5.5 cm-1 (ΔE ST = 0.065 kJ mol-1)). The presence of the trans-1,4-cyclohexylene bridge is instrumental for the successful isolation of this dicationic diradical. Notably, in the case of ethylene or propylene bridged bis-NHC-CAAC dimers, the corresponding dicationic diradicals are transient and rearrange to hydrogen abstracted products.

15.
Chemistry ; 28(33): e202200751, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35357732

RESUMO

Bismuth containing hybrid molecular ferroelectrics are receiving tremendous attention in recent years owing to their stable and non-toxic composition. However, these perovskite-like structures are primarily limited to ammonium cations. Herein, we report a new phosphonium based discrete perovskite-like hybrid ferroelectric with a formula [Me(Ph)3 P]3 [Bi2 Br9 ] (MTPBB) and its mechanical energy harvesting capability. The Polarization-Electric field (P-E) measurements resulted in a well-defined ferroelectric hysteresis loop with a remnant polarization value of 2.1 µC cm-2 . Piezoresponse force microscopy experiments enabled visualization of the ferroelectric domain structure and evaluation of the piezoelectric strain coefficient (d33 ) for an MTPBB single crystal and thin film sample. Furthermore, flexible devices incorporating MTPBB in polydimethylsiloxane (PDMS) matrix at various concentrations were fabricated and explored for their mechanical energy harvesting properties. The champion device with 20 wt % of MTPBB in PDMS rendered a maximum peak-to-peak open-circuit voltage of 22.9 V and a maximum power density of 7 µW cm-2 at an optimal load of 4 MΩ. Moreover, the potential of MTPBB-based devices in low power electronics was demonstrated by storing the harvested energy in various electrolytic capacitors.

16.
iScience ; 25(3): 103898, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35243256

RESUMO

High-quality growth of MoS2-xNx films is realized on single-crystal c-Al2O3 substrates by the pulsed laser deposition (PLD) in ammonia rendering highly stable and tunable 1T'/2H biphasic constitution. Raman spectroscopy reveals systematic enhancement of 1T' phase component due to the incorporation of covalently bonded N-doping in MoS2 lattice, inducing compressive strain. Interestingly, the film deposited at 300 mTorr NH3 shows ∼80% 1T' phase. The transport measurements performed on MoS2-xNx films deposited at 300 mTorr NH3 display very low room temperature resistivity of 0.03 mΩ-cm which is 100 times enhanced over the undoped MoS2 grown under comparable conditions. A triboelectric nanogenerator (TENG) device containing biphasic MoS2-xNx film as an electron acceptor exhibits a clear enhancement in the output voltage as compared to the pristine MoS2. Device architecture, p-type N doping in MoS2 lattice, favorably increased work-function, multiphasic component of MoS2, and increased surface roughness synergistically contribute to superior TENG performance.

17.
Chem Rec ; 22(3): e202100281, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34962082

RESUMO

The chemistry of the imido-anions of the main group elements has been studied for more than three decades. The imido (NR)- group is isoelectronic to the oxo (=O) group and can coordinate with metal ions through its lone pairs of electrons. The polyimido-P(V) anions are well explored as they resemble the phosphorus oxo moieties such as H3 PO4 , H2 PO4 - , HPO4 2- and PO4 3- species. These imido anions are typically generated using strong main group organometallic reagents such as n BuLi, Et2 Zn, Me3 Al and n Bu2 Mg, etc. As a result, their coordination chemistry has been restricted to reactions in anhydrous aprotic solvents for a few main group metal ions. This account presents our findings on using certain soft transition metal such Ag(I) and Pd (II) for isolating these imido-P(V) anions as their corresponding self-assembled clusters and cages. Using the various salts of Ag(I) ions in reaction with 2-pyridyl (2 Py) functionalized phosphonium salts and phosphoric triamides, we obtained the mono- and dianionic form of these imido ligands {[P(N2 Py)2 (NH2 Py)2 ]- , [P(N2 Py)2 (NH2 Py)]- , [PO(N2 Py)(NH2 Py)2 ]2- } and derived interesting examples of tri, penta, hepta and octanuclear Ag(I) clusters. Interestingly, by using the salts of Pd (II) ions, the elusive imido-phosphate trianions of the type [(RN)3 PO]3- (R=t Bu, c Hex, i Pr) were generated in a facile one pot reaction as their corresponding tri- and hexanuclear clusters of the type {Pd3 [(NR)3 PO](OAc)3 }n (n=1 or 2). These trianions acts as a cis-coordinated hexadentate ligand for a trinuclear Pd (II) cluster and serve as the polyhedral building units for constructing hitherto unknown family of neutral cages in tetrahedral {Pd3 [(Ni Pr)3 PO]4 (L)6 } and cubic {Pd3 [(Ni Pr)3 PO]8 (L)12 } structures in the presence of suitable linker ligands (L2- ). These cages show interesting host-guest chemistry and post-assembly reactions. Remarkably, by employing chiral tris(imido)phosphate trianions, enantiopure chiral cages of the type [(Pd3 X*)4 (L)6 ], ([X*]3- =RRR- or SSS-[PO(N(*CH(CH3 )Ph)3 ]3- ), were synthesized and used for the chiral-recognition and enantio-separation of small racemic guest molecules. Some of these chiral cages were also shown to exhibit polyradical framework structures. In future, these and other similar types of cages are envisioned as potential molecular vessels for performing the reactions in their confined environment. The enantiomeric cages can be probed for asymmetric catalysis and the separation of a range of small chiral molecules.

18.
ACS Mater Au ; 2(2): 124-131, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36855770

RESUMO

Perovskite-structured compounds containing organic cations and inorganic anions have gained prominence as materials for next-generation electronic and energy devices. Hybrid materials possessing ferro- and piezoelectric properties are in recent focus for mechanical energy harvesting (nanogenerator) applications. Here, we report the ferroelectric behavior of A2BX4-type halogenocuprate materials supported by heteroleptic phosphonium cations. These lead-free discrete Cu(II) halides [Ph3MeP]2[CuCl4] (1) and [Ph3MeP]2[CuBr4] (2) exhibit a remnant polarization (P r) of 17.16 and 26.02 µC cm-2, respectively, at room temperature. Furthermore, flexible polymer films were prepared with various weight percentage (wt %) compositions of 1 in thermoplastic polyurethane (TPU) and studied for mechanical energy harvesting applications. A highest peak-to-peak voltage output of 25 V and power density of 14.1 µW cm-2 were obtained for the optimal 15 wt % 1-TPU composite film. The obtained output voltages were utilized for charging a 100 µF electrolytic capacitor that reaches its maximum charging point within 30 s with sizable stored energies and accumulated charges.

19.
Chem Asian J ; 16(24): 4122-4129, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34699132

RESUMO

Organic ferroelectrics due to their low cost, easy preparation, light weight, high flexibility and phase stability are gaining tremendous attention in the field of portable electronics. In this work, we report the synthesis, structure and ferroelectric behavior of a two-component ammonium salt 2, containing a bulky [Bn(4-BrBn)NMe2 ]+ (Bn=benzyl and 4-BrBn=4-bromobenzyl) cation and tetrahedral (BF4 )- anion. The structural analysis revealed the presence of rich non-classical C-H⋅⋅⋅F and C-H⋅⋅⋅Br interactions in this molecule that were quantified by Hirshfeld surface analysis. The polarization (P) vs. electric field (E) hysteresis loop measurements on 2 gave a remnant polarization (Pr ) of 14.4 µC cm-2 at room temperature. Flexible polymer composites with various (5, 10, 15 and 20) weight percentages (wt%) of 2 in thermoplastic polyurethane (TPU) were prepared and tested for mechanical energy harvesting applications. A notable peak-to-peak output voltage of 20 V, maximum current density of 1.1 µA cm-2 and power density of 21.1 µW cm-2 were recorded for the 15 wt% 2-TPU composite device. Furthermore, the voltage output generated from this device was utilized to rapidly charge a 100 µF capacitor, with stored energies and measured charges of 156 µJ and 121.6 µC, respectively.

20.
Inorg Chem ; 60(14): 10468-10477, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34232616

RESUMO

The self-assembly reactions of tetratopic metal acceptors with the flexible bidentate ligands are known to yield self-assembled molecular squares of the type [M4L8], triangles of composition [M3L6], or a mixture of these two. In this work, we demonstrate the preferential formation of a trimeric cage assembly of the formula [Pd3(L1)6·(BF4)6] (1a) over the tetrameric cage [Pd4(L1)8·(BF4)8] (1b) by employing a flexible dipodal phosphoramide ligand, [PhPO(NH(3-Py))2] (L1; 3-Py = 3-aminopyridine), in a reaction with [Pd(CH3CN)4·(BF4)2]. The entropically favored trimeric self-assembly of 1a is the predominant species in the solution [dimethyl sulfoxide (DMSO)-d6] at room temperature. In fact, at higher temperatures, 1a was found to be the only product, as observed from the disappearance of the peak due to 1b in the 31P NMR spectrum. However, in a 1:1 mixture of acetonitrile (MeCN)-d3 and DMSO-d6, the tetrameric species 1b is the preferred species, as revealed by the 31P NMR and electrospray ionization mass spectral analyses. The structure of the molecular trimer 1a has been established in the solid state by using single-crystal X-ray diffraction analysis. Interestingly, treatment of an another flexible ligand, [MePO(NH(3-Py))2] (L2), with the same Pd(II) acceptor resulted in exclusive formation of the trimeric cage [Pd3(L2)6·(BF4)6] (2).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA