Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(51): 61215-61226, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34905920

RESUMO

Two-dimensional (2D) materials are promising components for defect passivation of metal halide perovskites. Unfortunately, commonly used polydisperse liquid-exfoliated 2D materials generally suffer from heterogeneous structures and properties while incorporated into perovskite films. We introduce monodisperse multifunctional 2D crystalline carbon nitride, poly(triazine imide) (PTI), as an effective defect passivation agent in perovskite films via typical solution processing. Incorporation of PTI into perovskite film can be readily attained by simple solution mixing of PTI dispersions with perovskite precursor solutions, resulting in the highly selective distribution of PTI localized at the defective crystal grain boundaries and layer interfaces in the functional perovskite layer. Several chemical, optical, and electronic characterizations, in conjunction with density functional theory calculations, reveal multiple beneficial roles from PTI: passivation of undercoordinated organic cations at the surface of perovskite crystal, suppression of ion migration by blocking diffusion channels, and prevention of hole quenching at perovskite/SnO2 interfaces. Consequently, a noticeably improved power conversion efficiency is achieved in perovskite solar cells, accompanied with promoted stability under humid air and thermal stress. Our strategy highlights the potential of judiciously designed 2D materials as a simple-to-implement material for various optoelectronic devices, including solar cells, based on hybrid perovskites.

2.
Science ; 368(6487): 155-160, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32217753

RESUMO

Maximizing the power conversion efficiency (PCE) of perovskite/silicon tandem solar cells that can exceed the Shockley-Queisser single-cell limit requires a high-performing, stable perovskite top cell with a wide bandgap. We developed a stable perovskite solar cell with a bandgap of ~1.7 electron volts that retained more than 80% of its initial PCE of 20.7% after 1000 hours of continuous illumination. Anion engineering of phenethylammonium-based two-dimensional (2D) additives was critical for controlling the structural and electrical properties of the 2D passivation layers based on a lead iodide framework. The high PCE of 26.7% of a monolithic two-terminal wide-bandgap perovskite/silicon tandem solar cell was made possible by the ideal combination of spectral responses of the top and bottom cells.

3.
Nat Commun ; 9(1): 4208, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30310064

RESUMO

Redox enzymes catalyze fascinating chemical reactions with excellent regio- and stereo-specificity. Nicotinamide adenine dinucleotide cofactor is essential in numerous redox biocatalytic reactions and needs to be regenerated because it is consumed as an equivalent during the enzymatic turnover. Here we report on unbiased photoelectrochemical tandem assembly of a photoanode (FeOOH/BiVO4) and a perovskite photovoltaic to provide sufficient potential for cofactor-dependent biocatalytic reactions. We obtain a high faradaic efficiency of 96.2% and an initial conversion rate of 2.4 mM h-1 without an external applied bias for the photoelectrochemical enzymatic conversion of α-ketoglutarate to L-glutamate via L-glutamate dehydrogenase. In addition, we achieve a total turnover number and a turnover frequency of the enzyme of 108,800 and 6200 h-1, respectively, demonstrating that the tandem configuration facilitates redox biocatalysis using light as the only energy source.

4.
RSC Adv ; 8(38): 21551-21557, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35539955

RESUMO

The solution process is the most widely used method to prepare perovskite absorbers for high performance solar cells due to its ease for fabrication and low capital cost. However, an insufficient level of reproducibility of the solution process is often a concern. Complex precursor solution chemistry is likely one of the main reasons for the reproducibility issue. Here we report the effects of triple cation lead mixed-halide perovskite precursor solution aging on the quality of the resulting films and the device performance. Our study revealed that precursor solution aging has a great influence on the colloidal size distribution of the solution, which then affects the phase purity of the films and device performance. We determined the optimum aging hours that led to the best device efficiency along with the highest reproducibility. Dynamic light scattering revealed the formation of micron-sized colloidal intermediates in the solution when aged longer than the optimum hours and further analysis along with X-ray diffraction measurements suggested there were two chemical origins of the large aggregates, FA-based and Cs-based complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA