Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
JCI Insight ; 4(4)2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30830860

RESUMO

GPR55, a lipid-sensing receptor, is implicated in cell cycle control, malignant cell mobilization, and tissue invasion in cancer. However, a physiological role for GPR55 is virtually unknown for any tissue type. Here, we localize GPR55 to self-renewing ductal epithelial cells and their terminally differentiated progeny in both human and mouse salivary glands. Moreover, we find GPR55 expression downregulated in salivary gland mucoepidermoid carcinomas and GPR55 reinstatement by antitumor irradiation, suggesting that GPR55 controls renegade proliferation. Indeed, GPR55 antagonism increases cell proliferation and function determination in quasiphysiological systems. In addition, Gpr55-/- mice present ~50% enlarged submandibular glands with many more granulated ducts, as well as disordered endoplasmic reticuli and with glycoprotein content. Next, we hypothesized that GPR55 could also modulate salivation and glycoprotein content by entraining differentiated excretory progeny. Accordingly, GPR55 activation facilitated glycoprotein release by itself, inducing low-amplitude Ca2+ oscillations, as well as enhancing acetylcholine-induced Ca2+ responses. Topical application of GPR55 agonists, which are ineffective in Gpr55-/- mice, into adult rodent submandibular glands increased salivation and saliva glycoprotein content. Overall, we propose that GPR55 signaling in epithelial cells ensures both the life-long renewal of ductal cells and the continuous availability of saliva and glycoproteins for oral health and food intake.


Assuntos
Células-Tronco Adultas/fisiologia , Carcinoma Mucoepidermoide/patologia , Diferenciação Celular/fisiologia , Receptores de Canabinoides/metabolismo , Neoplasias das Glândulas Salivares/patologia , Salivação/fisiologia , Adulto , Células-Tronco Adultas/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Carcinoma Mucoepidermoide/radioterapia , Diferenciação Celular/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Autorrenovação Celular/fisiologia , Regulação para Baixo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Glicoproteínas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Receptores de Canabinoides/genética , Saliva/química , Saliva/metabolismo , Neoplasias das Glândulas Salivares/radioterapia , Salivação/efeitos dos fármacos , Glândula Submandibular/efeitos dos fármacos , Glândula Submandibular/metabolismo , Glândula Submandibular/patologia
2.
EMBO J ; 36(14): 2107-2125, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28637794

RESUMO

Ca2+-sensor proteins are generally implicated in insulin release through SNARE interactions. Here, secretagogin, whose expression in human pancreatic islets correlates with their insulin content and the incidence of type 2 diabetes, is shown to orchestrate an unexpectedly distinct mechanism. Single-cell RNA-seq reveals retained expression of the TRP family members in ß-cells from diabetic donors. Amongst these, pharmacological probing identifies Ca2+-permeable transient receptor potential vanilloid type 1 channels (TRPV1) as potent inducers of secretagogin expression through recruitment of Sp1 transcription factors. Accordingly, agonist stimulation of TRPV1s fails to rescue insulin release from pancreatic islets of glucose intolerant secretagogin knock-out(-/-) mice. However, instead of merely impinging on the SNARE machinery, reduced insulin availability in secretagogin-/- mice is due to ß-cell loss, which is underpinned by the collapse of protein folding and deregulation of secretagogin-dependent USP9X deubiquitinase activity. Therefore, and considering the desensitization of TRPV1s in diabetic pancreata, a TRPV1-to-secretagogin regulatory axis seems critical to maintain the structural integrity and signal competence of ß-cells.


Assuntos
Regulação da Expressão Gênica , Células Secretoras de Insulina/fisiologia , Proteínas/metabolismo , Secretagoginas/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Sobrevivência Celular , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Secretagoginas/deficiência , Análise de Célula Única
3.
J Neurosci ; 32(42): 14775-93, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-23077062

RESUMO

Diffuse white matter injury (DWMI) caused by hypoxia is associated with permanent neurodevelopmental disabilities in preterm infants. The cellular and molecular mechanisms producing DWMI are poorly defined. Using a mouse model of neonatal hypoxia, we demonstrate a biphasic effect on oligodendrocyte development, resulting in hypomyelination. Oligodendrocyte death and oligodendrocyte progenitor cell (OPC) proliferation during the week after hypoxia were followed by delayed oligodendrocyte differentiation and abnormal myelination, as demonstrated by electron microscopy. Cdk2 activation was essential for the regenerative OPC response after hypoxia and was accompanied by reduced FoxO1-dependent p27(Kip1) expression. p27(Kip1) was also reduced in OPCs in human infant white matter lesions after hypoxia. The negative effects of hypoxia on oligodendrogenesis and myelination were more pronounced in p27(Kip1)-null mice; conversely, overexpression of FoxO1 or p27(Kip1) in OPCs after hypoxia promoted oligodendrogenesis. Our studies demonstrate for the first time that neonatal hypoxia affects the Foxo1/p27(Kip1) pathway during white matter development. We also show that molecular manipulation of this pathway enhances oligodendrocyte regeneration during a critical developmental time window after DWMI. Thus, FoxO1 and p27(Kip1) may serve as promising target molecules for promoting timely oligodendrogenesis in neonatal DWMI.


Assuntos
Diferenciação Celular/fisiologia , Inibidor de Quinase Dependente de Ciclina p27/biossíntese , Fatores de Transcrição Forkhead/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Hipóxia Encefálica/metabolismo , Regeneração Nervosa/fisiologia , Oligodendroglia/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p27/genética , Proteína Forkhead Box O1 , Humanos , Hipóxia Encefálica/patologia , Lactente , Recém-Nascido , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Oligodendroglia/citologia
4.
Genes Dev ; 25(24): 2674-85, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22190461

RESUMO

Use-dependent selection of optimal connections is a key feature of neural circuit development and, in the mature brain, underlies functional adaptation, such as is required for learning and memory. Activity patterns guide circuit refinement through selective stabilization or elimination of specific neuronal branches and synapses. The molecular signals that mediate activity-dependent synapse and arbor stabilization and maintenance remain elusive. We report that knockout of the activity-regulated gene cpg15 in mice delays developmental maturation of axonal and dendritic arbors visualized by anterograde tracing and diolistic labeling, respectively. Electrophysiology shows that synaptic maturation is also delayed, and electron microscopy confirms that many dendritic spines initially lack functional synaptic contacts. While circuits eventually develop, in vivo imaging reveals that spine maintenance is compromised in the adult, leading to a gradual attrition in spine numbers. Loss of cpg15 also results in poor learning. cpg15 knockout mice require more trails to learn, but once they learn, memories are retained. Our findings suggest that CPG15 acts to stabilize active synapses on dendritic spines, resulting in selective spine and arbor stabilization and synaptic maturation, and that synapse stabilization mediated by CPG15 is critical for efficient learning.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Sinapses/fisiologia , Animais , Axônios/metabolismo , Espinhas Dendríticas/genética , Espinhas Dendríticas/fisiologia , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Aprendizagem/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Sinapses/genética
5.
J Neurosci ; 30(35): 11815-25, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20810901

RESUMO

Sirt1 has been associated with various effects of calorie restriction, including an increase in lifespan. Here we show in mice that a central regulatory component in energy metabolism, the hypothalamic melanocortin system, is affected by Sirt1, which promotes the activity and connectivity of this system resulting in negative energy balance. In adult mice, the pharmacological inhibition of brain Sirt1 activity decreased Agrp neuronal activity and the inhibitory tone on the anorexigenic POMC neurons, as measured by the number of synaptic inputs to these neurons. When a Sirt1 inhibitor (EX-527) was injected either peripherally (i.p., 10 mg/kg) or directly into the brain (i.c.v., 1.5 nmol/mouse), it decreased both food intake during the dark cycle and ghrelin-induced food intake. This effect on feeding is mediated by upstream melanocortin receptors, because the MC4R antagonist, SHU9119, reversed Sirt1's effect on food intake. This action of Sirt1 required an appropriate shift in the mitochondrial redox state: in the absence of such an adaptation enabled by the mitochondrial protein, UCP2, Sirt1-induced cellular and behavioral responses were impaired. In accordance with the pharmacological results, the selective knock-out of Sirt1 in hypothalamic Agrp neurons through the use of Cre-Lox technology decreased electric responses of Agrp neurons to ghrelin and decreased food intake, leading to decreased lean mass, fat mass, and body weight. The present data indicate that Sirt1 has a central mode of action by acting on the NPY/Agrp neurons to affect body metabolism.


Assuntos
Proteína Relacionada com Agouti/fisiologia , Metabolismo Energético/fisiologia , Melanocortinas/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Sirtuína 1/fisiologia , Sinapses/fisiologia , Potenciais Sinápticos/fisiologia , Proteína Relacionada com Agouti/biossíntese , Animais , Carbazóis/administração & dosagem , Combinação de Medicamentos , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Metabolismo Energético/efeitos dos fármacos , Feminino , Masculino , Melanocortinas/metabolismo , Hormônios Estimuladores de Melanócitos/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oxirredução/efeitos dos fármacos , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/deficiência , Sinapses/efeitos dos fármacos , Potenciais Sinápticos/efeitos dos fármacos
6.
Proc Natl Acad Sci U S A ; 107(33): 14875-80, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20679202

RESUMO

The neuronal circuits involved in the regulation of feeding behavior and energy expenditure are soft-wired, reflecting the relative activity of the postsynaptic neuronal system, including the anorexigenic proopiomelanocortin (POMC)-expressing cells of the arcuate nucleus. We analyzed the synaptic input organization of the melanocortin system in lean rats that were vulnerable (DIO) or resistant (DR) to diet-induced obesity. We found a distinct difference in the quantitative and qualitative synaptology of POMC cells between DIO and DR animals, with a significantly greater number of inhibitory inputs in the POMC neurons in DIO rats compared with DR rats. When exposed to a high-fat diet (HFD), the POMC cells of DIO animals lost synapses, whereas those of DR rats recruited connections. In both DIO rats and mice, the HFD-triggered loss of synapses on POMC neurons was associated with increased glial ensheathment of the POMC perikarya. The altered synaptic organization of HFD-fed animals promoted increased POMC tone and a decrease in the stimulatory connections onto the neighboring neuropeptide Y (NPY) cells. Exposure to HFD was associated with reactive gliosis, and this affected the structure of the blood-brain barrier such that the POMC and NPY cell bodies and dendrites became less accessible to blood vessels. Taken together, these data suggest that consumption of an HFD has a major impact on the cytoarchitecture of the arcuate nucleus in vulnerable subjects, with changes that might be irreversible due to reactive gliosis.


Assuntos
Dieta , Gliose/metabolismo , Melanocortinas/metabolismo , Obesidade/metabolismo , Sinapses/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/patologia , Núcleo Arqueado do Hipotálamo/fisiopatologia , Gorduras na Dieta/efeitos adversos , Feminino , Gliose/etiologia , Hipotálamo/metabolismo , Hipotálamo/patologia , Hipotálamo/fisiopatologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica , Neurônios/metabolismo , Neurônios/ultraestrutura , Neuropeptídeo Y/metabolismo , Obesidade/etiologia , Pró-Opiomelanocortina/metabolismo , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/fisiologia
7.
J Neurosci ; 30(2): 703-13, 2010 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-20071535

RESUMO

Increased sensory input from maternal care attenuates neuroendocrine and behavioral responses to stress long term and results in a lifelong phenotype of resilience to depression and improved cognitive function. Whereas the mechanisms of this clinically important effect remain unclear, the early, persistent suppression of the expression of the stress neurohormone corticotropin-releasing hormone (CRH) in hypothalamic neurons has been implicated as a key aspect of this experience-induced neuroplasticity. Here, we tested whether the innervation of hypothalamic CRH neurons of rat pups that received augmented maternal care was altered in a manner that might promote the suppression of CRH expression and studied the cellular mechanisms underlying this suppression. We found that the number of excitatory synapses and the frequency of miniature excitatory synaptic currents onto CRH neurons were reduced in "care-augmented" rats compared with controls, as were the levels of the glutamate vesicular transporter vGlut2. In contrast, analogous parameters of inhibitory synapses were unchanged. Levels of the transcriptional repressor neuron-restrictive silencer factor (NRSF), which negatively regulates Crh gene transcription, were markedly elevated in care-augmented rats, and chromatin immunoprecipitation demonstrated that this repressor was bound to a cognate element (neuron-restrictive silencing element) on the Crh gene. Whereas the reduced excitatory innervation of CRH-expressing neurons dissipated by adulthood, increased NRSF levels and repression of CRH expression persisted, suggesting that augmented early-life experience reprograms Crh gene expression via mechanisms involving transcriptional repression by NRSF.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Privação Materna , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Estresse Psicológico/patologia , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Imunoprecipitação da Cromatina/métodos , Hormônio Liberador da Corticotropina/genética , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Masculino , Microscopia Eletrônica de Transmissão/métodos , Neurônios/ultraestrutura , Núcleo Hipotalâmico Paraventricular/ultraestrutura , Técnicas de Patch-Clamp , Estimulação Física , Gravidez , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Repressoras/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Estresse Psicológico/metabolismo , Potenciais Sinápticos/efeitos dos fármacos , Potenciais Sinápticos/fisiologia , Tetrodotoxina/farmacologia , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
8.
Diabetes ; 59(2): 337-46, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19933998

RESUMO

OBJECTIVE: The sites of insulin action in the central nervous system that regulate glucose metabolism and energy expenditure are incompletely characterized. We have shown that mice with hypothalamic deficiency (L1) of insulin receptors (InsRs) fail to regulate hepatic glucose production (HGP) in response to insulin. RESEARCH DESIGN AND METHODS: To distinguish neurons that mediate insulin's effects on HGP from those that regulate energy homeostasis, we used targeted knock-ins to express InsRs in agouti-related protein (AgRP) or proopiomelanocortin (POMC) neurons of L1 mice. RESULTS: Restoration of insulin action in AgRP neurons normalized insulin suppression of HGP. Surprisingly, POMC-specific InsR knock-in increased energy expenditure and locomotor activity, exacerbated insulin resistance and increased HGP, associated with decreased expression of the ATP-sensitive K(+) channel (K(ATP) channel) sulfonylurea receptor 1 subunit, and decreased inhibitory synaptic contacts on POMC neurons. CONCLUSIONS: The contrasting phenotypes of InsR knock-ins in POMC and AgRP neurons suggest a branched-pathway model of hypothalamic insulin signaling in which InsR signaling in AgRP neurons decreases HGP, whereas InsR activation in POMC neurons promotes HGP and activates the melanocortinergic energy expenditure program.


Assuntos
Proteína Relacionada com Agouti/fisiologia , Metabolismo Energético , Glucose/biossíntese , Fígado/metabolismo , Neurônios/fisiologia , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/fisiologia , Receptor de Insulina/fisiologia , Animais , Peso Corporal , Primers do DNA , Ingestão de Energia , Jejum , Glucagon/sangue , Técnica Clamp de Glucose , Insulina/farmacologia , Camundongos , Camundongos Transgênicos , RNA/genética , RNA/isolamento & purificação , Receptor de Insulina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Nature ; 454(7206): 846-51, 2008 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-18668043

RESUMO

The gut-derived hormone ghrelin exerts its effect on the brain by regulating neuronal activity. Ghrelin-induced feeding behaviour is controlled by arcuate nucleus neurons that co-express neuropeptide Y and agouti-related protein (NPY/AgRP neurons). However, the intracellular mechanisms triggered by ghrelin to alter NPY/AgRP neuronal activity are poorly understood. Here we show that ghrelin initiates robust changes in hypothalamic mitochondrial respiration in mice that are dependent on uncoupling protein 2 (UCP2). Activation of this mitochondrial mechanism is critical for ghrelin-induced mitochondrial proliferation and electric activation of NPY/AgRP neurons, for ghrelin-triggered synaptic plasticity of pro-opiomelanocortin-expressing neurons, and for ghrelin-induced food intake. The UCP2-dependent action of ghrelin on NPY/AgRP neurons is driven by a hypothalamic fatty acid oxidation pathway involving AMPK, CPT1 and free radicals that are scavenged by UCP2. These results reveal a signalling modality connecting mitochondria-mediated effects of G-protein-coupled receptors on neuronal function and associated behaviour.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Grelina/metabolismo , Canais Iônicos/metabolismo , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Relacionada com Agouti/genética , Animais , Carnitina O-Palmitoiltransferase/metabolismo , Ácidos Graxos/metabolismo , Comportamento Alimentar/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Grelina/farmacologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Canais Iônicos/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Proteínas Mitocondriais/genética , Neurônios/efeitos dos fármacos , Neuropeptídeo Y/genética , Fosforilação/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Proteína Desacopladora 2
10.
J Clin Invest ; 117(12): 4022-33, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18060037

RESUMO

Sleep is a natural process that preserves energy, facilitates development, and restores the nervous system in higher animals. Sleep loss resulting from physiological and pathological conditions exerts tremendous pressure on neuronal circuitry responsible for sleep-wake regulation. It is not yet clear how acute and chronic sleep loss modify neuronal activities and lead to adaptive changes in animals. Here, we show that acute and chronic prolonged wakefulness in mice induced by modafinil treatment produced long-term potentiation (LTP) of glutamatergic synapses on hypocretin/orexin neurons in the lateral hypothalamus, a well-established arousal/wake-promoting center. A similar potentiation of synaptic strength at glutamatergic synapses on hypocretin/orexin neurons was also seen when mice were sleep deprived for 4 hours by gentle handling. Blockade of dopamine D1 receptors attenuated prolonged wakefulness and synaptic plasticity in these neurons, suggesting that modafinil functions through activation of the dopamine system. Also, activation of the cAMP pathway was not able to further induce LTP at glutamatergic synapses in brain slices from mice treated with modafinil. These results indicate that synaptic plasticity due to prolonged wakefulness occurs in circuits responsible for arousal and may contribute to changes in the brain and body of animals experiencing sleep loss.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Plasticidade Neuronal , Neurônios/metabolismo , Neuropeptídeos , Privação do Sono/metabolismo , Sinapses/metabolismo , Vigília , Animais , Compostos Benzidrílicos/efeitos adversos , Compostos Benzidrílicos/farmacologia , Estimulantes do Sistema Nervoso Central/efeitos adversos , Estimulantes do Sistema Nervoso Central/farmacologia , AMP Cíclico/metabolismo , Dopamina/metabolismo , Feminino , Hipotálamo/metabolismo , Hipotálamo/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Potenciação de Longa Duração , Masculino , Camundongos , Modafinila , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/patologia , Neuropeptídeos/metabolismo , Orexinas , Receptores de Dopamina D1/metabolismo , Privação do Sono/induzido quimicamente , Privação do Sono/patologia , Sinapses/patologia , Vigília/efeitos dos fármacos
11.
Neurobiol Aging ; 28(8): 1286-95, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16870307

RESUMO

Orexin neuropeptides regulate arousal state and excite the noradrenergic locus coeruleus (LC), so it is plausible that an age-related loss of orexin neurons and projections to the LC contributes to poor sleep quality in elderly humans and nonhuman primates. To test this hypothesis we examined orexin B-immunoreactivity in the lateral hypothalamic area (LHA) and the LC of male rhesus macaques (Macaca mulatta) throughout the life span. Orexin perikarya, localized predominantly in the LHA, showed identical distribution patterns irrespective of age. Similarly, orexin neuron number and serum orexin B concentrations did not differ with age. In contrast, orexin B-immunoreactive axon density in the LC of old animals was significantly lower than that observed in the young or adult animals. Furthermore, the age-related decline was associated with a significant decrease in tyrosine hydroxylase (TH) mRNA in the LC, despite no change in TH-immunoreactive neuron number. Taken together, these data suggest that age-related decreases in excitatory orexin innervation to the noradrenergic LC may contribute to the etiology of poor sleep quality in the elderly.


Assuntos
Envelhecimento/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Locus Cerúleo/citologia , Macaca mulatta/fisiologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Fatores Etários , Análise de Variância , Animais , Região Hipotalâmica Lateral/metabolismo , Hibridização In Situ/métodos , Peptídeos e Proteínas de Sinalização Intracelular/sangue , Masculino , Neuropeptídeos/sangue , Orexinas , Tirosina 3-Mono-Oxigenase/metabolismo
12.
J Clin Invest ; 116(12): 3229-39, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17060947

RESUMO

The gut hormone ghrelin targets the brain to promote food intake and adiposity. The ghrelin receptor growth hormone secretagogue 1 receptor (GHSR) is present in hypothalamic centers controlling energy metabolism as well as in the ventral tegmental area (VTA), a region important for motivational aspects of multiple behaviors, including feeding. Here we show that in mice and rats, ghrelin bound to neurons of the VTA, where it triggered increased dopamine neuronal activity, synapse formation, and dopamine turnover in the nucleus accumbens in a GHSR-dependent manner. Direct VTA administration of ghrelin also triggered feeding, while intra-VTA delivery of a selective GHSR antagonist blocked the orexigenic effect of circulating ghrelin and blunted rebound feeding following fasting. In addition, ghrelin- and GHSR-deficient mice showed attenuated feeding responses to restricted feeding schedules. Taken together, these data suggest that the mesolimbic reward circuitry is targeted by peripheral ghrelin to influence physiological mechanisms related to feeding.


Assuntos
Apetite/efeitos dos fármacos , Dopamina/metabolismo , Neurônios/metabolismo , Hormônios Peptídicos/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Imunofluorescência/métodos , Grelina , Masculino , Mesencéfalo/citologia , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Núcleo Accumbens/citologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Técnicas de Patch-Clamp , Hormônios Peptídicos/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Grelina , Fatores de Tempo , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
13.
Neuron ; 51(2): 239-49, 2006 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-16846858

RESUMO

The neural pathways through which central serotonergic systems regulate food intake and body weight remain to be fully elucidated. We report that serotonin, via action at serotonin1B receptors (5-HT1BRs), modulates the endogenous release of both agonists and antagonists of the melanocortin receptors, which are a core component of the central circuitry controlling body weight homeostasis. We also show that serotonin-induced hypophagia requires downstream activation of melanocortin 4, but not melanocortin 3, receptors. These results identify a primary mechanism underlying the serotonergic regulation of energy balance and provide an example of a centrally derived signal that reciprocally regulates melanocortin receptor agonists and antagonists in a similar manner to peripheral adiposity signals.


Assuntos
Ingestão de Alimentos/fisiologia , Neurônios/fisiologia , Receptor Tipo 3 de Melanocortina/fisiologia , Receptor 5-HT1B de Serotonina/fisiologia , Receptores de Melanocortina/fisiologia , Serotonina/fisiologia , Animais , Ingestão de Alimentos/efeitos dos fármacos , Estimulação Elétrica , Masculino , Camundongos , Camundongos Endogâmicos A , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Camundongos Transgênicos , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Neurônios/efeitos dos fármacos , Piridinas/farmacologia , Receptor Tipo 4 de Melanocortina/agonistas , Receptor Tipo 4 de Melanocortina/antagonistas & inibidores , Receptor Tipo 4 de Melanocortina/fisiologia , Receptores de Melanocortina/agonistas , Receptores de Melanocortina/antagonistas & inibidores , Serotonina/farmacologia , Agonistas do Receptor 5-HT1 de Serotonina
14.
Nat Neurosci ; 8(10): 1289-91, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16158063

RESUMO

Multiple hormones controlling energy homeostasis regulate the expression of neuropeptide Y (NPY) and agouti-related peptide (AgRP) in the arcuate nucleus of the hypothalamus. Nevertheless, inactivation of the genes encoding NPY and/or AgRP has no impact on food intake in mice. Here we demonstrate that induced selective ablation of AgRP-expressing neurons in adult mice results in acute reduction of feeding, demonstrating direct evidence for a critical role of these neurons in the regulation of energy homeostasis.


Assuntos
Núcleo Arqueado do Hipotálamo/citologia , Comportamento Alimentar/fisiologia , Regulação da Expressão Gênica/fisiologia , Neurônios/metabolismo , Proteínas/metabolismo , Proteína Relacionada com Agouti , Animais , Anorexia/metabolismo , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Contagem de Células/métodos , Toxina Diftérica/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Pró-Opiomelanocortina/deficiência , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Proteínas/genética , Fatores de Tempo , beta-Galactosidase/biossíntese
15.
J Neurosci ; 24(50): 11439-48, 2004 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-15601950

RESUMO

The hypothalamic neuropeptides hypocretins (orexins) play a crucial role in the stability of arousal and alertness. We tested whether the hypocretinergic system is a critical component of the stress response activated by the corticotropin-releasing factor (CRF). Our results show that CRF-immunoreactive terminals make direct contact with hypocretin-expressing neurons in the lateral hypothalamus and that numerous hypocretinergic neurons express the CRF-R1/2 receptors. We also demonstrate that application of CRF to hypothalamic slices containing identified hypocretin neurons depolarizes membrane potential and increases firing rate in a subpopulation of hypocretinergic cells. CRF-induced depolarization was tetrodotoxin insensitive and was blocked by the peptidergic CRF-R1 antagonist astressin. Moreover, activation of hypocretinergic neurons in response to acute stress was severely impaired in CRF-R1 knock-out mice. Together, our data provide evidence of a direct neuroanatomical and physiological input from CRF peptidergic system onto hypocretin neurons. We propose that, after stressor stimuli, CRF stimulates the release of hypocretins and that this circuit contributes to activation and maintenance of arousal associated with the stress response.


Assuntos
Nível de Alerta/fisiologia , Química Encefálica/fisiologia , Hormônio Liberador da Corticotropina/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Neuropeptídeos/fisiologia , Estresse Fisiológico/fisiopatologia , Potenciais de Ação/fisiologia , Animais , Encéfalo/anatomia & histologia , Hormônio Liberador da Corticotropina/análise , Feminino , Hipotálamo/química , Hipotálamo/fisiologia , Imuno-Histoquímica , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intracelular/análise , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Knockout , Vias Neurais/anatomia & histologia , Vias Neurais/química , Neurônios/química , Neurônios/fisiologia , Neuropeptídeos/análise , Receptores de Orexina , Orexinas , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/fisiologia , Receptores Acoplados a Proteínas G , Receptores de Neuropeptídeos , Proteínas Recombinantes de Fusão
16.
Neuron ; 44(4): 677-90, 2004 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-15541315

RESUMO

Long-term maintenance and modification of synaptic strength involve the turnover of neurotransmitter receptors. Glutamate receptors are constitutively and acutely internalized, presumptively through clathrin-mediated receptor endocytosis. Here, we show that cpg2 is a brain-specific splice variant of the syne-1 gene that encodes a protein specifically localized to a postsynaptic endocytotic zone of excitatory synapses. RNAi-mediated CPG2 knockdown increases the number of postsynaptic clathrin-coated vesicles, some of which traffic NMDA receptors, disrupts the constitutive internalization of glutamate receptors, and inhibits the activity-induced internalization of synaptic AMPA receptors. Manipulating CPG2 levels also affects dendritic spine size, further supporting a function in regulating membrane transport. Our results suggest that CPG2 is a key component of a specialized postsynaptic endocytic mechanism devoted to the internalization of synaptic proteins, including glutamate receptors. The activity dependence and distribution of cpg2 expression further suggest that it contributes to the capacity for postsynaptic plasticity inherent to excitatory synapses.


Assuntos
Encéfalo/fisiologia , Endocitose/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Receptores de Glutamato/fisiologia , Sinapses/fisiologia , Animais , Sequência de Bases , Northern Blotting , Western Blotting , Células Cultivadas , Vesículas Revestidas por Clatrina/metabolismo , Humanos , Hibridização In Situ , Microscopia Eletrônica , Dados de Sequência Molecular , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sinapses/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA