Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Mitochondrion ; 71: 40-49, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37211294

RESUMO

Circulating DNAs are considered as degraded DNA fragments of approximately 50-200 bp, found in blood plasma, consisting of cell-free mitochondrial and nuclear DNA. Such cell-free DNAs in the blood are found to be altered in different pathological conditions including lupus, heart disease, and malignancies. While nuclear DNAs are being used and being developed as a powerful clinical biomarker in liquid biopsies, mitochondrial DNAs (mtDNAs) are associated with inflammatory conditions including cancer progression. Patients with cancer including prostate cancer are found to have measurable concentrations of mitochondrial DNA in circulation in comparison with healthy controls. The plasma content of mitochondrial DNA is dramatically elevated in both prostate cancer patients and mouse models treated with the chemotherapeutic drug. Cell-free mtDNA, in its oxidized form, induced a pro-inflammatory condition and activates NLRP3-mediated inflammasome formation which causes IL-1ß-mediated activation of growth factors. On the other hand, interacting with TLR9, mtDNAs trigger NF-κB-mediated complement C3a positive feedback paracrine loop and activate pro-proliferating signaling through upregulating AKT, ERK, and Bcl2 in the prostate tumor microenvironment. In this review, we discuss the growing evidence supporting cell-free mitochondrial DNA copy number, size, and mutations in mtDNA genes as potential prognostic biomarkers in different cancers and targetable prostate cancer therapeutic candidates impacting stromal-epithelial interactions essential for chemotherapy response.


Assuntos
Ácidos Nucleicos Livres , Neoplasias da Próstata , Humanos , Masculino , Animais , Camundongos , DNA Mitocondrial/metabolismo , Prognóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Mitocôndrias/metabolismo , Microambiente Tumoral
3.
J Biol Chem ; 295(31): 10560-10561, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737145

RESUMO

Cancer cell invasion and metastasis rely on invadopodia, important extensions of the cytoskeleton that initiate degradation of the basement membrane that holds a cell in place. Transforming growth factor-ß (TGF-ß) is well-known to induce breast cancer migration and invasion, but the mechanism by which TGF-ß signaling converts into cell motility is not completely understood. A study from Kiepas et al. revealed a new TGF-ß-dependent role for Src homology/collagen adaptor protein (SHCA) in the initiation of dynamic adhesion complexes involved in the formation of invadopodia. These results highlight new therapeutic opportunities for cancer patients that are not sensitive to HER2 antagonists.


Assuntos
Neoplasias da Mama , Lipoma , Podossomos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular , Colágeno , Humanos , Podossomos/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Fator de Crescimento Transformador beta/metabolismo
4.
Oncol Lett ; 18(4): 3954-3962, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31579078

RESUMO

The growth and metastasis of tumors is dependent on angiogenesis. C-type lectins are carbohydrate-binding proteins with a diverse range of functions. The C-type lectin family XIV members are transmembrane glycoproteins, and all four members of this family have been reported to regulate angiogenesis, although the detailed mechanism of action has yet to be completely elucidated. They interact with extracellular matrix proteins and mediate cell-cell adhesion by their lectin-like domain. The aim of the present study was to summarize the available information on the function and mechanism of C-type lectin family XIV in angiogenesis and discuss their potential as targets for cancer therapy.

5.
Int J Dev Biol ; 60(1-3): 53-6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26934290

RESUMO

The nucleolar protein 4-like (NOL4L) gene is present on chromosome 20 (20q11.21) in humans. Parts of this gene have been shown to fuse with RUNX1 and PAX5 in acute myeloid leukemia and acute lymphoblastic leukemia, respectively. The normal function of NOL4L in humans and other organisms is not well understood. The expression patterns and functions of NOL4L homologs during vertebrate development have not been reported. We sought to address these questions by studying the expression pattern of zebrafish nol4l during embryogenesis. Our data show that Znol4l mRNA is expressed in multiple organs in zebrafish embryos. The sites of expression include parts of the brain, spinal cord, pronephros, hematopoietic cells and gut.


Assuntos
Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Nucleares/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Embrião não Mamífero/embriologia , Humanos , Hibridização In Situ , Proteínas Nucleares/classificação , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA