Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 8(1): 1987, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215010

RESUMO

Carminic acid, a glucosylated anthraquinone found in scale insects like Dactylopius coccus, has since ancient times been used as a red colorant in various applications. Here we show that a membrane-bound C-glucosyltransferase, isolated from D. coccus and designated DcUGT2, catalyzes the glucosylation of flavokermesic acid and kermesic acid into their respective C-glucosides dcII and carminic acid. DcUGT2 is predicted to be a type I integral endoplasmic reticulum (ER) membrane protein, containing a cleavable N-terminal signal peptide and a C-terminal transmembrane helix that anchors the protein to the ER, followed by a short cytoplasmic tail. DcUGT2 is found to be heavily glycosylated. Truncated DcUGT2 proteins synthesized in yeast indicate the presence of an internal ER-targeting signal. The cleavable N-terminal signal peptide is shown to be essential for the activity of DcUGT2, whereas the transmembrane helix/cytoplasmic domains, although important, are not crucial for its catalytic function.


Assuntos
Carmim/metabolismo , Membrana Celular/enzimologia , Retículo Endoplasmático/enzimologia , Glucosiltransferases/metabolismo , Hemípteros/metabolismo , Animais , Glucosídeos/metabolismo , Glicosilação , Domínios Proteicos , Sinais Direcionadores de Proteínas
2.
BMC Biol ; 14: 54, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27380775

RESUMO

BACKGROUND: Many pathogenic genetic variants have been shown to disrupt mRNA splicing. Besides splice mutations in the well-conserved splice sites, mutations in splicing regulatory elements (SREs) may deregulate splicing and cause disease. A promising therapeutic approach is to compensate for this deregulation by blocking other SREs with splice-switching oligonucleotides (SSOs). However, the location and sequence of most SREs are not well known. RESULTS: Here, we used individual-nucleotide resolution crosslinking immunoprecipitation (iCLIP) to establish an in vivo binding map for the key splicing regulatory factor hnRNP A1 and to generate an hnRNP A1 consensus binding motif. We find that hnRNP A1 binding in proximal introns may be important for repressing exons. We show that inclusion of the alternative cassette exon 3 in SKA2 can be significantly increased by SSO-based treatment which blocks an iCLIP-identified hnRNP A1 binding site immediately downstream of the 5' splice site. Because pseudoexons are well suited as models for constitutive exons which have been inactivated by pathogenic mutations in SREs, we used a pseudoexon in MTRR as a model and showed that an iCLIP-identified hnRNP A1 binding site downstream of the 5' splice site can be blocked by SSOs to activate the exon. CONCLUSIONS: The hnRNP A1 binding map can be used to identify potential targets for SSO-based therapy. Moreover, together with the hnRNP A1 consensus binding motif, the binding map may be used to predict whether disease-associated mutations and SNPs affect hnRNP A1 binding and eventually mRNA splicing.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Oligonucleotídeos/metabolismo , Splicing de RNA/genética , Células A549 , Sequência de Bases , Sítios de Ligação , Reagentes de Ligações Cruzadas/química , Éxons/genética , Predisposição Genética para Doença , Células HEK293 , Células HeLa , Ribonucleoproteína Nuclear Heterogênea A1 , Humanos , Imunoprecipitação , Modelos Biológicos , Nucleotídeos/genética , Sítios de Splice de RNA/genética , Sequências Reguladoras de Ácido Nucleico/genética , Transcriptoma/genética
3.
RNA Biol ; 12(9): 985-97, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26176322

RESUMO

Listeria monocytogenes is the causative agent of the foodborne disease listeriosis. During infection, L. monocytogenes produces an array of non-coding RNAs, including the multicopy sRNA LhrC. These five, nearly identical sRNAs are highly induced in response to cell envelope stress and target the virulence adhesin lapB at the post-transcriptional level. Here, we demonstrate that LhrC controls expression of additional genes encoding cell envelope-associated proteins with virulence function. Using transcriptomics and proteomics, we identified a set of genes affected by LhrC in response to cell envelope stress. Three targets were significantly down-regulated by LhrC at both the RNA and protein level: lmo2349, tcsA and oppA. All three genes encode membrane-associated proteins: A putative substrate binding protein of an amino acid ABC transporter (Lmo2349); the CD4+ T cell-stimulating antigen TcsA, and the oligopeptide binding protein OppA, of which the latter 2 are required for full virulence of L. monocytogenes. For OppA, we show that LhrC acts by direct base paring to the ribosome binding site of the oppA mRNA, leading to an impediment of its translation and a decreased mRNA level. The sRNA-mRNA interaction depends on 2 of 3 CU-rich regions in LhrC allowing binding of 2 oppA mRNAs to a single LhrC molecule. Finally, we found that LhrC contributes to infection in macrophage-like cells. These findings demonstrate a central role for LhrC in controlling the level of OppA and other virulence-associated cell envelope proteins in response to cell envelope stress.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Dosagem de Genes , Regulação Bacteriana da Expressão Gênica , Lipoproteínas/genética , Listeria monocytogenes/genética , Pequeno RNA não Traduzido/genética , Animais , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Proteínas de Transporte/metabolismo , Perfilação da Expressão Gênica , Lipoproteínas/metabolismo , Listeria monocytogenes/metabolismo , Macrófagos/microbiologia , Camundongos , Mutação , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Óperon , Proteoma , Proteômica/métodos , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/metabolismo , Estresse Fisiológico/genética , Transcriptoma
4.
J Proteomics ; 75(13): 4139-50, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22652490

RESUMO

Sorghum bicolor, a drought tolerant cereal crop, is not only an important food source in the semi arid/arid regions but also a potential model for studying and gaining a better understanding of the molecular mechanisms of drought and salt stress tolerance in cereals. In this study, seeds of a sweet sorghum variety, MN1618, were planted and grown on solid MS growth medium with or without 100mM NaCl. Heat shock protein expression immunoblotting assays demonstrated that this salt treatment induced stress within natural physiological parameters for our experimental material. 2D PAGE in combination with MS/MS proteomics techniques were used to separate, visualise and identify salinity stress responsive proteins in young sorghum leaves. Out of 281 Coomassie stainable spots, 118 showed statistically significant responses (p<0.05) to salt stress treatments. Of the 118 spots, 79 were selected for tandem mass spectrometric identification, owing to their good resolution and abundance levels, and of these, 55 were positively identified. Identified proteins were divided into six functional categories including both known and novel/putative stress responsive proteins. Molecular and physiological functions of some of our proteins of interest are currently under investigation via bioinformatic and molecular biology approaches.


Assuntos
Proteínas de Choque Térmico/metabolismo , Salinidade , Estresse Fisiológico/fisiologia , Proteínas de Choque Térmico HSP70/biossíntese , Proteínas de Plantas/metabolismo , Proteômica/métodos , Tolerância ao Sal , Plântula/metabolismo , Cloreto de Sódio/farmacologia , Sorghum/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA