Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Basic Res Cardiol ; 117(1): 14, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35275268

RESUMO

Persistent inflammation following myocardial infarction (MI) precipitates adverse outcome including acute ventricular rupture and chronic heart failure. Molecular imaging allows longitudinal assessment of immune cell activity in the infarct territory and predicts severity of remodeling. We utilized a multiparametric imaging platform to assess the immune response and cardiac healing following MI in mice. Suppression of circulating macrophages prior to MI paradoxically resulted in higher total leukocyte content in the heart, demonstrated by increased CXC motif chemokine receptor 4 (CXCR4) positron emission tomography imaging. This supported the formation of a thrombus overlying the injured region, as identified by magnetic resonance imaging. The injured and thrombotic region in macrophage depeleted mice subsequently showed active calcification, as evidenced by accumulation of 18F-fluoride and by cardiac computed tomography. Importantly, macrophage suppression triggered a prolonged inflammatory response confirmed by post-mortem tissue analysis that was associated with higher mortality from ventricular rupture early after occlusion and with increased infarct size and worse chronic contractile function at 6 weeks after reperfusion. These findings establish a molecular imaging toolbox for monitoring the interplay between adverse immune response and tissue repair after MI. This may serve as a foundation for development and monitoring of novel targeted therapies that may include immune modulation and endogenous healing support.


Assuntos
Infarto do Miocárdio , Remodelação Ventricular , Animais , Imunidade , Camundongos , Infarto do Miocárdio/patologia , Miocárdio/patologia , Tomografia por Emissão de Pósitrons/métodos , Remodelação Ventricular/fisiologia
2.
J Am Coll Cardiol ; 77(23): 2923-2935, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34112319

RESUMO

BACKGROUND: Pathological cardiac hypertrophy is a result of afterload-increasing pathologies including untreated hypertension and aortic stenosis. It features progressive adverse cardiac remodeling, myocardial dysfunction, capillary rarefaction, and interstitial fibrosis often leading to heart failure. OBJECTIVES: This study aimed to establish a novel porcine model of pressure-overload-induced heart failure and to determine the effect of inhibition of microribonucleic acid 132 (miR-132) on heart failure development in this model. METHODS: This study developed a novel porcine model of percutaneous aortic constriction by implantation of a percutaneous reduction stent in the thoracic aorta, inducing progressive remodeling at day 56 (d56) after pressure-overload induction. In this study, an antisense oligonucleotide specifically inhibiting miR-132 (antimiR-132), was regionally applied via intracoronary injection at d0 (percutaneous transverse aortic constriction induction) and d28. RESULTS: At d56, antimiR-132 treatment diminished cardiomyocyte cross-sectional area (188.9 ± 2.8 vs. 258.4 ± 9.0 µm2 in untreated hypertrophic hearts) and improved global cardiac function (ejection fraction 48.9 ± 1.0% vs. 36.1 ± 1.7% in control hearts). Moreover, at d56 antimiR-132-treated hearts displayed less increase of interstitial fibrosis compared with sham-operated hearts (Δsham 1.8 ± 0.5%) than control hearts (Δsham 10.8 ± 0.6%). Of note, cardiac platelet and endothelial cell adhesion molecule 1+ capillary density was higher in the antimiR-132-treated hearts (647 ± 20 cells/mm2) compared with in the control group (485 ± 23 cells/mm2). CONCLUSIONS: The inhibition of miR-132 is a valid strategy in prevention of heart failure progression in hypertrophic heart disease and may be developed as a treatment for heart failure of nonischemic origin.


Assuntos
Antagomirs/administração & dosagem , Doenças da Aorta/complicações , Cardiomegalia/tratamento farmacológico , MicroRNAs/antagonistas & inibidores , Remodelação Ventricular/efeitos dos fármacos , Animais , Aorta Torácica/cirurgia , Cardiomegalia/complicações , Cardiomegalia/diagnóstico , Constrição , Constrição Patológica/complicações , Vasos Coronários , Modelos Animais de Doenças , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/prevenção & controle , Injeções Intra-Arteriais , MicroRNAs/genética , MicroRNAs/metabolismo , Stents/efeitos adversos , Suínos , Resultado do Tratamento
3.
J Nucl Cardiol ; 28(4): 1636-1645, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31659697

RESUMO

BACKGROUND: Leukocyte subtypes bear distinct pro-inflammatory, reparative, and regulatory functions. Imaging inflammation provides information on disease prognosis and may guide therapy, but the cellular basis of the signal remains equivocal. We evaluated leukocyte subtype specificity of characterized clinically relevant inflammation-targeted radiotracers. METHODS AND RESULTS: Leukocyte populations were purified from blood- and THP-1-derived macrophages were polarized into M1-, reparative M2a-, or M2c-macrophages. In vitro uptake assays were conducted using tracers of enhanced glucose or amino acid metabolism and molecular markers of inflammatory cells. Both 18F-deoxyglucose (18F-FDG) and the labeled amino acid 11C-methionine (11C-MET) displayed higher uptake in neutrophils and monocytes compared to other leukocytes (P = 0.005), and markedly higher accumulation in pro-inflammatory M1-macrophages compared to reparative M2a-macrophages (P < 0.001). Molecular tracers 68Ga-DOTATATE targeting the somatostatin receptor type 2 and 68Ga-pentixafor targeting the chemokine receptor type 4 (CXCR4) exhibited broad uptake by leukocyte subpopulations and polarized macrophages with highest uptake in T-cells/natural killer cells and B-cells compared to neutrophils. Mitochondrial translocator protein (TSPO)-targeted 18F-flutriciclamide selectively accumulated in monocytes and pro-inflammatory M1 macrophages (P < 0.001). Uptake by myocytes and fibroblasts tended to be higher for metabolic radiotracers. CONCLUSIONS: The different in vitro cellular uptake profiles may allow isolation of distinct phases of the inflammatory pathway with specific inflammation-targeted radiotracers. The pathogenetic cell population in specific inflammatory diseases should be considered in the selection of an appropriate imaging agent.


Assuntos
Leucócitos/metabolismo , Macrófagos/metabolismo , Compostos Radiofarmacêuticos/farmacocinética , Animais , Técnicas de Cultura de Células , Complexos de Coordenação/farmacocinética , Fibroblastos/metabolismo , Radioisótopos de Flúor/farmacocinética , Fluordesoxiglucose F18/farmacocinética , Humanos , Indóis/farmacocinética , Miócitos Cardíacos/metabolismo , Octreotida/análogos & derivados , Octreotida/farmacocinética , Compostos Organometálicos/farmacocinética , Peptídeos Cíclicos/farmacocinética , Ratos
4.
Eur Heart J ; 42(2): 192-201, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33089304

RESUMO

AIMS: Cardiac miR-132 activation leads to adverse remodelling and pathological hypertrophy. CDR132L is a synthetic lead-optimized oligonucleotide inhibitor with proven preclinical efficacy and safety in heart failure (HF) early after myocardial infarction (MI), and recently completed clinical evaluation in a Phase 1b study (NCT04045405). The aim of the current study was to assess safety and efficacy of CDR132L in a clinically relevant large animal (pig) model of chronic heart failure following MI. METHODS AND RESULTS: In a chronic model of post-MI HF, slow-growing pigs underwent 90 min left anterior descending artery occlusion followed by reperfusion. Animals were randomized and treatment started 1-month post-MI. Monthly intravenous (IV) treatments of CDR132L over 3 or 5 months (3× or 5×) were applied in a blinded randomized placebo-controlled fashion. Efficacy was evaluated based on serial magnetic resonance imaging, haemodynamic, and biomarker analyses. The treatment regime provided sufficient tissue exposure and CDR132L was well tolerated. Overall, CDR132L treatment significantly improved cardiac function and reversed cardiac remodelling. In addition to the systolic recovery, diastolic function was also ameliorated in this chronic model of HF. CONCLUSION: Monthly repeated dosing of CDR132L is safe and adequate to provide clinically relevant exposure and therapeutic efficacy in a model of chronic post-MI HF. CDR132L thus should be explored as treatment for the broad area of chronic heart failure.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Animais , Diástole , Modelos Animais de Doenças , Insuficiência Cardíaca/tratamento farmacológico , Infarto do Miocárdio/tratamento farmacológico , Suínos , Remodelação Ventricular
5.
Eur J Nucl Med Mol Imaging ; 47(7): 1757-1768, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32125488

RESUMO

PURPOSE: Myocardial infarction (MI) triggers a local inflammatory response which orchestrates cardiac repair and contributes to concurrent neuroinflammation. Angiotensin-converting enzyme (ACE) inhibitor therapy not only attenuates cardiac remodeling by interfering with the neurohumoral system, but also influences acute leukocyte mobilization from hematopoietic reservoirs. Here, we seek to dissect the anti-inflammatory and anti-remodeling contributions of ACE inhibitors to the benefit of heart and brain outcomes after MI. METHODS: C57BL/6 mice underwent permanent coronary artery ligation (n = 41) or sham surgery (n = 9). Subgroups received ACE inhibitor enalapril (20 mg/kg, oral) either early (anti-inflammatory strategy; 10 days treatment beginning 3 days prior to surgery; n = 9) or delayed (anti-remodeling; continuous from 7 days post-MI; n = 16), or no therapy (n = 16). Cardiac and neuroinflammation were serially investigated using whole-body macrophage- and microglia-targeted translocator protein (TSPO) PET at 3 days, 7 days, and 8 weeks. In vivo PET signal was validated by autoradiography and histopathology. RESULTS: Myocardial infarction evoked higher TSPO signal in the infarct region at 3 days and 7 days compared with sham (p < 0.001), with concurrent elevation in brain TSPO signal (+ 18%, p = 0.005). At 8 weeks after MI, remote myocardium TSPO signal was increased, consistent with mitochondrial stress, and corresponding to recurrent neuroinflammation. Early enalapril treatment lowered the acute TSPO signal in the heart and brain by 55% (p < 0.001) and 14% (p = 0.045), respectively. The acute infarct signal predicted late functional outcome (r = 0.418, p = 0.038). Delayed enalapril treatment reduced chronic myocardial TSPO signal, consistent with alleviated mitochondrial stress. Early enalapril therapy tended to lower TSPO signal in the failing myocardium at 8 weeks after MI (p = 0.090) without an effect on chronic neuroinflammation. CONCLUSIONS: Whole-body TSPO PET identifies myocardial macrophage infiltration and neuroinflammation after MI, and altered cardiomyocyte mitochondrial density in chronic heart failure. Improved chronic cardiac outcome by enalapril treatment derives partially from acute anti-inflammatory activity with complementary benefits in later stages. Whereas early ACE inhibitor therapy lowers acute neuroinflammation, chronic alleviation is not achieved by early or delayed ACE inhibitor therapy, suggesting a more complex mechanism underlying recurrent neuroinflammation in ischemic heart failure.


Assuntos
Enalapril , Coração , Inflamação , Infarto do Miocárdio , Doenças do Sistema Nervoso , Doença Aguda , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Doença Crônica , Enalapril/farmacologia , Enalapril/uso terapêutico , Coração/diagnóstico por imagem , Coração/efeitos dos fármacos , Inflamação/diagnóstico por imagem , Inflamação/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/complicações , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/tratamento farmacológico , Doenças do Sistema Nervoso/diagnóstico por imagem , Doenças do Sistema Nervoso/tratamento farmacológico
6.
J Nucl Med ; 61(7): 977-980, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31806766

RESUMO

Acute myocardial infarction (MI) triggers a local and systemic inflammatory response. We recently showed microglia involvement using translocator protein imaging. Here, we evaluated whether 11C-methionine provides further insight into heart-brain inflammation networking. Methods: Male C57BL/6 mice underwent permanent coronary artery ligation followed by 11C-methionine PET at 3 and 7 d (n = 3). In subgroups, leukocyte homing was blocked by integrin antibodies (n = 5). The cellular substrate for PET signal was identified using brain section immunostaining. Results:11C-methionine uptake (percentage injected dose/cm3) peaked in the MI region on day 3 (5.9 ± 0.9 vs. 2.4 ± 0.5), decreasing to the control level by day 7 (4.3 ± 0.6). Brain uptake was proportional to cardiac uptake (r = 0.47, P < 0.05), peaking also on day 3 (2.9 ± 0.4 vs. 2.4 ± 0.3) and returning to baseline on day 7 (2.3 ± 0.4). Integrin blockade reduced uptake at every time point. Immunostaining on day 3 revealed colocalization of the l-type amino acid transporter, with glial fibrillary acidic protein-positive astrocytes but not CD68-positive microglia. Conclusion: PET imaging with 11C-methionine specifically identifies an astrocyte component, enabling further dissection of the heart-brain axis in post-MI inflammation.


Assuntos
Astrócitos/patologia , Radioisótopos de Carbono , Encefalite/complicações , Metionina , Microglia/patologia , Infarto do Miocárdio/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Doença Aguda , Animais , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/complicações , Infarto do Miocárdio/patologia , Imagem Corporal Total
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA