Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 11069, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422590

RESUMO

Recent neutron scattering experiments suggested that frustrated magnetic interactions give rise to antiferromagnetic spiral and fractional skyrmion lattice phases in MnSc[Formula: see text]S[Formula: see text] . Here, to trace the signatures of these modulated phases, we studied the spin excitations of MnSc[Formula: see text]S[Formula: see text] by THz spectroscopy at 300 mK and in magnetic fields up to 12 T and by broadband microwave spectroscopy at various temperatures up to 50 GHz. We found a single magnetic resonance with frequency linearly increasing in field. The small deviation of the Mn[Formula: see text] ion g-factor from 2, g = 1.96, and the absence of other resonances imply very weak anisotropies and negligible contribution of higher harmonics to the spiral state. The significant difference between the dc magnetic susceptibility and the lowest-frequency ac susceptibility in our experiment implies the existence of mode(s) outside of the measured frequency windows. The combination of THz and microwave experiments suggests a spin gap opening below the ordering temperature between 50 GHz and 100 GHz.


Assuntos
Frustração , Campos Magnéticos , Anisotropia , Micro-Ondas , Espectroscopia de Ressonância Magnética
2.
Phys Rev Lett ; 130(3): 036801, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36763405

RESUMO

Orbital degrees of freedom mediating an interaction between spin and lattice were predicted to raise strong magnetoelectric effect, i.e., to realize an efficient coupling between magnetic and ferroelectric orders. However, the effect of orbital fluctuations has been considered only in a few magnetoelectric materials, as orbital-degeneracy driven Jahn-Teller effect rarely couples to polarization. Here, we explore the spin-lattice coupling in multiferroic Swedenborgites with mixed valence and Jahn-Teller active transition metal ions on a stacked triangular and Kagome lattice using infrared and dielectric spectroscopy. On one hand, in CaBaM_{4}O_{7} (M=Co, Fe), we observe a strong magnetic-order-induced shift in the phonon frequencies and a corresponding large change in the dielectric response. Remarkably, as an unusual manifestation of the spin-phonon coupling, the spin fluctuations reduce the phonon lifetime by one order of magnitude at the magnetic phase transitions. On the other hand, lattice vibrations, dielectric response, and electric polarization show no variation at the Néel temperature of CaBaFe_{2}Co_{2}O_{7}, which is built up by orbital singlet ions. Our results provide a showcase for orbital degrees of freedom enhanced magnetoelectric coupling via the example of Swedenborgites.

3.
J Phys Condens Matter ; 30(44): 445402, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30255852

RESUMO

Local-probe imaging of the ferroelectric domain structure and auxiliary bulk pyroelectric measurements were conducted at low temperatures with the aim to clarify the essential aspects of the orbitally driven phase transition in GaMo4S8, a lacunar spinel crystal that can be viewed as a spin-hole analogue of its GaV4S8 counterpart. We employed multiple scanning probe techniques combined with symmetry and mechanical compatibility analysis to uncover the hierarchical domain structures, developing on the 10-100 nm scale. The identified domain architecture involves a plethora of ferroelectric domain boundaries and junctions, including primary and secondary domain walls in both electrically neutral and charged configurations, and topological line defects transforming neutral secondary walls into two oppositely charged ones.

4.
Phys Rev Lett ; 121(5): 057601, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30118285

RESUMO

The ultimate goal of multiferroic research is the development of a new-generation nonvolatile memory devices, where magnetic bits are controlled via electric fields with low energy consumption. Here, we demonstrate the optical identification of magnetoelectric (ME) antiferromagnetic (AFM) domains in the LiCoPO_{4} exploiting the strong absorption difference between the domains. This unusual contrast, also present in zero magnetic field, is attributed to the dynamic ME effect of the spin-wave excitations, as confirmed by our microscopic model, which also captures the characteristics of the observed static ME effect. The control and the optical readout of AFM/ME domains, demonstrated here, will likely promote the development of ME and spintronic devices based on AFM insulators.

5.
Artigo em Inglês | MEDLINE | ID: mdl-28972911

RESUMO

Low-frequency modes of L-Asp and L-Asn were studied in the range from 0.1 to 3.0THz using time-domain Terahertz spectroscopy and density functional theory calculation. The results show that PBE-D2 shows more success than BLYP-D2 in prediction of THz absorption spectra. To compare their low-frequency modes, we adopted "vibrational character ID strips" proposed by Schmuttenmaer and coworkers [Journal of Physical Chemistry B, 117, 10444(2013)]. We found that the most intense THz absorption peaks of two compounds both involve severe distortion of their hydrogen bonding networks. Due to less rigid hydrogen bonding network in L-Asp, the side chain (carboxyl group) of L-Asp exhibits larger motions than that (carboxamide group) of L-Asn in low-frequency modes.


Assuntos
Aminoácidos/química , Modelos Moleculares , Movimento (Física) , Teoria Quântica , Espectroscopia Terahertz , Cristalização , Ligação de Hidrogênio , Conformação Molecular , Vibração
6.
Sci Rep ; 7: 44663, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28294193

RESUMO

GaV4S8 is a multiferroic semiconductor hosting Néel-type magnetic skyrmions dressed with electric polarization. At Ts = 42 K, the compound undergoes a structural phase transition of weakly first-order, from a non-centrosymmetric cubic phase at high temperatures to a polar rhombohedral structure at low temperatures. Below Ts, ferroelectric domains are formed with the electric polarization pointing along any of the four 〈111〉 axes. Although in this material the size and the shape of the ferroelectric-ferroelastic domains may act as important limiting factors in the formation of the Néel-type skyrmion lattice emerging below TC = 13 K, the characteristics of polar domains in GaV4S8 have not been studied yet. Here, we report on the inspection of the local-scale ferroelectric domain distribution in rhombohedral GaV4S8 using low-temperature piezoresponse force microscopy. We observed mechanically and electrically compatible lamellar domain patterns, where the lamellae are aligned parallel to the (100)-type planes with a typical spacing between 100 nm-1.2 µm. Since the magnetic pattern, imaged by atomic force microscopy using a magnetically coated tip, abruptly changes at the domain boundaries, we expect that the control of ferroelectric domain size in polar skyrmion hosts can be exploited for the spatial confinement and manipulation of Néel-type skyrmions.

7.
Sci Adv ; 1(10): e1500916, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26702441

RESUMO

Skyrmions are whirl-like topological spin objects with high potential for future magnetic data storage. A fundamental question that is relevant to both basic research and application is whether ferroelectric (FE) polarization can be associated with skyrmions' magnetic texture and whether these objects can be manipulated by electric fields. We study the interplay between magnetism and electric polarization in the lacunar spinel GaV4S8, which undergoes a structural transition associated with orbital ordering at 44 K and reveals a complex magnetic phase diagram below 13 K, including ferromagnetic, cycloidal, and Néel-type skyrmion lattice (SkL) phases. We found that the orbitally ordered phase of GaV4S8 is FE with a sizable polarization of ~1 µC/cm(2). Moreover, we observed spin-driven excess polarizations in all magnetic phases; hence, GaV4S8 hosts three different multiferroic phases with coexisting polar and magnetic order. These include the SkL phase, where we predict a strong spatial modulation of FE polarization close to the skyrmion cores. By taking into account the crystal symmetry and spin patterns of the magnetically ordered phases, we identify exchange striction as the main microscopic mechanism behind the spin-driven FE polarization in each multiferroic phase. Because GaV4S8 is unique among known SkL host materials owing to its polar crystal structure and the observed strong magnetoelectric effect, this study is an important step toward the nondissipative electric field control of skyrmions.

8.
Phys Rev Lett ; 111(16): 166403, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24182286

RESUMO

Optical excitations of BiTeI with large Rashba spin splitting have been studied in an external magnetic field (B) applied parallel to the polar axis. A sequence of transitions between the Landau levels (LLs), whose energies are in proportion to √B were observed, being characteristic of massless Dirac electrons. The large separation energy between the LLs makes it possible to detect the strongest cyclotron resonance even at room temperature in moderate fields. Unlike in 2D Dirac systems, the magnetic field induced rearrangement of the conductivity spectrum is directly observed.

9.
Conserv Biol ; 27(2): 373-84, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23240629

RESUMO

Dynamic conservation of forest genetic resources (FGR) means maintaining the genetic diversity of trees within an evolutionary process and allowing generation turnover in the forest. We assessed the network of forests areas managed for the dynamic conservation of FGR (conservation units) across Europe (33 countries). On the basis of information available in the European Information System on FGR (EUFGIS Portal), species distribution maps, and environmental stratification of the continent, we developed ecogeographic indicators, a marginality index, and demographic indicators to assess and monitor forest conservation efforts. The pan-European network has 1967 conservation units, 2737 populations of target trees, and 86 species of target trees. We detected a poor coincidence between FGR conservation and other biodiversity conservation objectives within this network. We identified 2 complementary strategies: a species-oriented strategy in which national conservation networks are specifically designed for key target species and a site-oriented strategy in which multiple-target units include so-called secondary species conserved within a few sites. The network is highly unbalanced in terms of species representation, and 7 key target species are conserved in 60% of the conservation units. We performed specific gap analyses for 11 tree species, including assessment of ecogeographic, demographic, and genetic criteria. For each species, we identified gaps, particularly in the marginal parts of their distribution range, and found multiple redundant conservation units in other areas. The Mediterranean forests and to a lesser extent the boreal forests are underrepresented. Monitoring the conservation efficiency of each unit remains challenging; however, <2% of the conserved populations seem to be at risk of extinction. On the basis of our results, we recommend combining species-oriented and site-oriented strategies.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Variação Genética , Árvores/genética , Europa (Continente) , Especificidade da Espécie
10.
Langmuir ; 22(16): 6944-50, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16863243

RESUMO

The collapse mechanism of microparticulate Langmuir films was studied experimentally in the present work. Using a Wilhelmy film balance, surface pressure vs area isotherms were determined, and the particle removal during the compression was examined by video-microscope and by naked eye. Upon compressing partially wettable 75 microm diameter surface modified glass beads at liquid (water or aqueous surfactant solution)-air (or n-octane) interfaces, different collapse mechanisms were visualized depending on the wettability of the particles. At low contact angles (below 40 degrees ) irreversible particle removal was observed as a consequence of a particulate line-by-line collapse mechanism. At higher contact angles a buckling-type collapse mechanism was revealed without particle removal from the liquid interface. In the case of irreversible particle removal we assessed the contact angles from the nondissipative part of the isotherm. These values were found to be in reasonable agreement with those determined directly on the beads.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA