Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
J Mol Biol ; 436(2): 168378, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38043731

RESUMO

The UDP glucuronosyltransferases (UGT) deactivate many therapeutics via glucuronidation while being required for clearance of normal metabolites and xenobiotics. There are 19 UGT enzymes categorized into UGT1A and UGT2B families based on sequence conservation. This presents a challenge in terms of targeting specific UGTs to overcome drug resistance without eliciting overt toxicity. Here, we identified for the first time that UGT1A4 is highly elevated in acute myeloid leukemia (AML) patients and its reduction corresponded to objective clinical responses. To develop inhibitors to UGT1A4, we leveraged previous NMR-based fragment screening data against the C-terminal domain of UGT1A (UGT1A-C). NMR and medicinal chemistry strategies identified novel chemical matter based on fragment compounds with the capacity to bind ∼20 fold more tightly to UGT1A-C (Kd âˆ¼ 600 µM vs ∼30 µM). Some compounds differentially inhibited UGT1A4 versus UGT1A1 enzyme activity and restored drug sensitivity in resistant human cancer cells. NMR-based NOE experiments revealed these novel compounds recognised a region distal to the catalytic site suggestive of allosteric regulation. This binding region is poorly conserved between UGT1A and UGT2B C-terminal sequences, which otherwise exhibit high similarity. Consistently, these compounds did not bind to the C-terminal domain of UGT2B7 nor a triple mutant of UGT1A-C replaced with UGT2B7 residues in this region. Overall, we discovered a site on UGTs that can be leveraged to differentially target UGT1As and UGT2Bs, identified UGT1A4 as a therapeutic target, and found new chemical matter that binds the UGT1A C-terminus, inhibits glucuronidation and restores drug sensitivity.


Assuntos
Descoberta de Drogas , Resistencia a Medicamentos Antineoplásicos , Inibidores Enzimáticos , Glucuronosiltransferase , Humanos , Domínio Catalítico , Química Farmacêutica , Glucuronosiltransferase/antagonistas & inibidores , Difosfato de Uridina , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Espectroscopia de Ressonância Magnética/métodos
2.
Cancer Res ; 84(1): 101-117, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37801604

RESUMO

Exportin-1 (XPO1), the main soluble nuclear export receptor in eukaryotic cells, is frequently overexpressed in diffuse large B-cell lymphoma (DLBCL). A selective XPO1 inhibitor, selinexor, received approval as single agent for relapsed or refractory (R/R) DLBCL. Elucidating the mechanisms by which XPO1 overexpression supports cancer cells could facilitate further clinical development of XPO1 inhibitors. We uncovered here that XPO1 overexpression increases tolerance to genotoxic stress, leading to a poor response to chemoimmunotherapy. Upon DNA damage induced by MYC expression or exogenous compounds, XPO1 bound and exported EIF4E and THOC4 carrying DNA damage repair mRNAs, thereby increasing synthesis of DNA damage repair proteins under conditions of increased turnover. Consequently, XPO1 inhibition decreased the capacity of lymphoma cells to repair DNA damage and ultimately resulted in increased cytotoxicity. In a phase I clinical trial conducted in R/R DLBCL, the combination of selinexor with second-line chemoimmunotherapy was tolerated with early indication of efficacy. Overall, this study reveals that XPO1 overexpression plays a critical role in the increased tolerance of cancer cells to DNA damage while providing new insights to optimize the clinical development of XPO1 inhibitors. SIGNIFICANCE: XPO1 regulates the dynamic ribonucleoprotein nuclear export in response to genotoxic stress to support tolerance and can be targeted to enhance the sensitivity of cancer cells to endogenous and exogenous DNA damage. See related commentary by Knittel and Reinhardt, p. 3.


Assuntos
Linfoma Difuso de Grandes Células B , Linfoma não Hodgkin , Humanos , Transporte Ativo do Núcleo Celular , Carioferinas/metabolismo , Linhagem Celular Tumoral , Hidrazinas/farmacologia , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Dano ao DNA , Linfoma não Hodgkin/tratamento farmacológico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Bioessays ; 46(1): e2300145, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37926700

RESUMO

Recent findings position the eukaryotic translation initiation factor eIF4E as a novel modulator of mRNA splicing, a process that impacts the form and function of resultant proteins. eIF4E physically interacts with the spliceosome and with some intron-containing transcripts implying a direct role in some splicing events. Moreover, eIF4E drives the production of key components of the splicing machinery underpinning larger scale impacts on splicing. These drive eIF4E-dependent reprogramming of the splicing signature. This work completes a series of studies demonstrating eIF4E acts in all the major mRNA maturation steps whereby eIF4E drives production of the RNA processing machinery and escorts some transcripts through various maturation steps. In this way, eIF4E couples the mRNA processing-export-translation axis linking nuclear mRNA processing to cytoplasmic translation. eIF4E elevation is linked to worse outcomes in acute myeloid leukemia patients where these activities are dysregulated. Understanding these effects provides new insight into post-transcriptional control and eIF4E-driven cancers.


Assuntos
Fator de Iniciação 4E em Eucariotos , Leucemia Mieloide Aguda , Humanos , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Regulação da Expressão Gênica , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Haematologica ; 108(11): 2946-2958, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36951168

RESUMO

Drug resistance underpins poor outcomes in many malignancies including refractory and relapsed acute myeloid leukemia (R/R AML). Glucuronidation is a common mechanism of drug inactivation impacting many AML therapies, e.g., cytarabine, decitabine, azacytidine and venetoclax. In AML cells, the capacity for glucuronidation arises from increased production of the UDP-glucuronosyltransferase 1A (UGT1A) enzymes. UGT1A elevation was first observed in AML patients who relapsed after response to ribavirin, a drug used to target the eukaryotic translation initiation factor eIF4E, and subsequently in patients who relapsed on cytarabine. UGT1A elevation resulted from increased expression of the sonic-hedgehog transcription factor GLI1. Vismodegib inhibited GLI1, decreased UGT1A levels, reduced glucuronidation of ribavirin and cytarabine, and re-sensitized cells to these drugs. Here, we examined if UGT1A protein levels, and thus glucuronidation activity, were targetable in humans and if this corresponded to clinical response. We conducted a phase II trial using vismodegib with ribavirin, with or without decitabine, in largely heavily pre-treated patients with high-eIF4E AML. Pre-therapy molecular assessment of patients' blasts indicated highly elevated UGT1A levels relative to healthy volunteers. Among patients with partial response, blast response or prolonged stable disease, vismodegib reduced UGT1A levels, which corresponded to effective targeting of eIF4E by ribavirin. In all, our studies are the first to demonstrate that UGT1A protein, and thus glucuronidation, are targetable in humans. These studies pave the way for the development of therapies that impair glucuronidation, one of the most common drug deactivation modalities. Clinicaltrials.gov: NCT02073838.


Assuntos
Glucuronosiltransferase , Leucemia Mieloide Aguda , Humanos , Decitabina/uso terapêutico , Glucuronosiltransferase/metabolismo , Glucuronosiltransferase/uso terapêutico , Ribavirina/uso terapêutico , Ribavirina/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/uso terapêutico , Fator de Iniciação 4E em Eucariotos/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/uso terapêutico , Terapia de Alvo Molecular , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Citarabina , Difosfato de Uridina/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
5.
EMBO J ; 42(7): e110496, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36843541

RESUMO

Aberrant splicing is typically attributed to splice-factor (SF) mutation and contributes to malignancies including acute myeloid leukemia (AML). Here, we discovered a mutation-independent means to extensively reprogram alternative splicing (AS). We showed that the dysregulated expression of eukaryotic translation initiation factor eIF4E elevated selective splice-factor production, thereby impacting multiple spliceosome complexes, including factors mutated in AML such as SF3B1 and U2AF1. These changes generated a splicing landscape that predominantly supported altered splice-site selection for ~800 transcripts in cell lines and ~4,600 transcripts in specimens from high-eIF4E AML patients otherwise harboring no known SF mutations. Nuclear RNA immunoprecipitations, export assays, polysome analyses, and mutational studies together revealed that eIF4E primarily increased SF production via its nuclear RNA export activity. By contrast, eIF4E dysregulation did not induce known SF mutations or alter spliceosome number. eIF4E interacted with the spliceosome and some pre-mRNAs, suggesting its direct involvement in specific splicing events. eIF4E induced simultaneous effects on numerous SF proteins, resulting in a much larger range of splicing alterations than in the case of mutation or dysregulation of individual SFs and providing a novel paradigm for splicing control and dysregulation.


Assuntos
Processamento Alternativo , Leucemia Mieloide Aguda , Humanos , Fatores de Processamento de RNA/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Splicing de RNA , Fatores de Iniciação em Eucariotos/genética , Leucemia Mieloide Aguda/genética , Mutação
6.
Biomol NMR Assign ; 17(1): 67-73, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36757531

RESUMO

UDP-glucuronosyltransferases are the principal enzymes involved in the glucuronidation of metabolites and xenobiotics for physiological clearance in humans. Though glucuronidation is an indispensable process in the phase II metabolic pathway, UGT-mediated glucuronidation of most prescribed drugs (> 55%) and clinical evidence of UGT-associated drug resistance are major concerns for therapeutic development. While UGTs are highly conserved enzymes, they manifest unique substrate and inhibitor specificity which is poorly understood given the dearth of experimentally determined full-length structures. Such information is important not only to conceptualize their specificity but is central to the design of inhibitors specific to a given UGT in order to avoid toxicity associated with pan-UGT inhibitors. Here, we provide the 1H, 13C and 15N backbone (~ 90%) and sidechain (~ 62%) assignments for the C-terminal domain of UGT2B17, which can be used to determine the molecular binding sites of inhibitor and substrate, and to understand the atomic basis for inhibitor selectivity between UGT2B17 and other members of the UGT2B subfamily. Given the physiological relevance of UGT2B17 in the elimination of hormone-based cancer drugs, these assignments will contribute towards dissecting the structural basis for substrate specificity, selective inhibitor recognition and other aspects of enzyme activity with the goal of selectively overcoming glucuronidation-based drug resistance.


Assuntos
Glucuronosiltransferase , Difosfato de Uridina , Humanos , Ressonância Magnética Nuclear Biomolecular , Glucuronosiltransferase/química , Antígenos de Histocompatibilidade Menor
7.
Biochem Soc Trans ; 50(5): 1447-1456, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36282006

RESUMO

Typically, cancer is thought to arise due to DNA mutations, dysregulated transcription and/or aberrant signalling. Recently, it has become clear that dysregulated mRNA processing, mRNA export and translation also contribute to malignancy. RNA processing events result in major modifications to the physical nature of mRNAs such as the addition of the methyl-7-guanosine cap, the removal of introns and the addition of polyA tails. mRNA processing is a critical determinant for the protein-coding capacity of mRNAs since these physical changes impact the efficiency by which a given transcript can be exported to the cytoplasm and translated into protein. While many of these mRNA metabolism steps were considered constitutive housekeeping activities, they are now known to be highly regulated with combinatorial and multiplicative impacts i.e. one event will influence the capacity to undergo others. Furthermore, alternative splicing and/or cleavage and polyadenylation can produce transcripts with alternative messages and new functionalities. The coordinated processing of groups of functionally related RNAs can potently re-wire signalling pathways, modulate survival pathways and even re-structure the cell. As postulated by the RNA regulon model, combinatorial regulation of these groups is achieved by the presence of shared cis-acting elements (known as USER codes) which recruit machinery for processing, export or translation. In all, dysregulated RNA metabolism in cancer gives rise to an altered proteome that in turn elicits biological responses related to malignancy. Studies of these events in cancer revealed new mechanisms underpinning malignancies and unearthed novel therapeutic opportunities. In all, cancer cells coopt RNA processing, export and translation to support their oncogenic activity.


Assuntos
Neoplasias , Poliadenilação , RNA Mensageiro/metabolismo , Transporte Ativo do Núcleo Celular , Processamento Alternativo , Íntrons , Splicing de RNA , Neoplasias/genética
8.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232396

RESUMO

The eukaryotic DNA replication fork is a hub of enzymes that continuously act to synthesize DNA, propagate DNA methylation and other epigenetic marks, perform quality control, repair nascent DNA, and package this DNA into chromatin. Many of the enzymes involved in these spatiotemporally correlated processes perform their functions by binding to proliferating cell nuclear antigen (PCNA). A long-standing question has been how the plethora of PCNA-binding enzymes exert their activities without interfering with each other. As a first step towards deciphering this complex regulation, we studied how Chromatin Assembly Factor 1 (CAF-1) binds to PCNA. We demonstrate that CAF-1 binds to PCNA in a heretofore uncharacterized manner that depends upon a cation-pi (π) interaction. An arginine residue, conserved among CAF-1 homologs but absent from other PCNA-binding proteins, inserts into the hydrophobic pocket normally occupied by proteins that contain canonical PCNA interaction peptides (PIPs). Mutation of this arginine disrupts the ability of CAF-1 to bind PCNA and to assemble chromatin. The PIP of the CAF-1 p150 subunit resides at the extreme C-terminus of an apparent long α-helix (119 amino acids) that has been reported to bind DNA. The length of that helix and the presence of a PIP at the C-terminus are evolutionarily conserved among numerous species, ranging from yeast to humans. This arrangement of a very long DNA-binding coiled-coil that terminates in PIPs may serve to coordinate DNA and PCNA binding by CAF-1.


Assuntos
Cromatina , Replicação do DNA , Aminoácidos/metabolismo , Arginina/metabolismo , Cromatina/genética , Cromatina/metabolismo , Fator 1 de Modelagem da Cromatina/química , Fator 1 de Modelagem da Cromatina/genética , Fator 1 de Modelagem da Cromatina/metabolismo , DNA/metabolismo , Humanos , Peptídeos/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
9.
Biochem Cell Biol ; 100(4): 276-281, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35658546

RESUMO

In this review, I describe our scientific journey to unearth the impact of RNA metabolism in cancer using the eukaryotic translation initiation factor eIF4E as an exemplar. This model allowed us to discover new structural, biochemical, and molecular features of RNA processing, and to reveal their substantial impact on cell physiology. This led us to develop proof-of-principle strategies to target these pathways in cancer patients leading to clinical benefit. I discuss the important role that the unexpected plays in research and the necessity of embracing the data even when it clashes with dogma. I also touch on the importance of equity, diversity, and inclusion to the success of the scientific enterprise.


Assuntos
Fator de Iniciação 4E em Eucariotos , Neoplasias , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Humanos , Neoplasias/genética
10.
Methods Mol Biol ; 2502: 91-104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35412233

RESUMO

The nuclear pore complex is the major conduit for trafficking between the nucleus and cytoplasm. Nuclear import and export of both proteins and RNAs represent important functional steps for many biological processes. One of the major means to study NPC activity and the nuclear and cytoplasmic distribution of proteins and RNAs is through biochemical fractionation. Here, we describe detailed methods to generate high quality nuclear and cytoplasmic fractions simultaneously capturing RNA and proteins which can be used subsequently for a wide array of biochemical characterizations including proteomics and next generation sequencings.


Assuntos
Poro Nuclear , RNA , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Poro Nuclear/metabolismo , Transporte Proteico , RNA/metabolismo
11.
J Mol Biol ; 434(5): 167451, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35026230

RESUMO

The control of RNA metabolism is an important aspect of molecular biology with wide-ranging impacts on cells. Central to processing of coding RNAs is the addition of the methyl-7 guanosine (m7G) "cap" on their 5' end. The eukaryotic translation initiation factor eIF4E directly binds the m7G cap and through this interaction plays key roles in many steps of RNA metabolism including nuclear RNA export and translation. eIF4E also stimulates capping of many transcripts through its ability to drive the production of the enzyme RNMT which methylates the G-cap to form the mature m7G cap. Here, we found that eIF4E also physically associated with RNMT in human cells. Moreover, eIF4E directly interacted with RNMT in vitro. eIF4E is only the second protein reported to directly bind the methyltransferase domain of RNMT, the first being its co-factor RAM. We combined high-resolution NMR methods with biochemical studies to define the binding interfaces for the RNMT-eIF4E complex. Further, we found that eIF4E competes for RAM binding to RNMT and conversely, RNMT competes for binding of well-established eIF4E-binding partners such as the 4E-BPs. RNMT uses novel structural means to engage eIF4E. Finally, we observed that m7G cap-eIF4E-RNMT trimeric complexes form, and thus RNMT-eIF4E complexes may be employed so that eIF4E captures newly capped RNA. In all, we show for the first time that the cap-binding protein eIF4E directly binds to the cap-maturation enzyme RNMT.


Assuntos
Fator de Iniciação 4E em Eucariotos , Capuzes de RNA , Fator de Iniciação 4E em Eucariotos/genética , Guanosina/metabolismo , Humanos , Metiltransferases/metabolismo , Ligação Proteica , Proteínas de Ligação ao Cap de RNA/genética , Proteínas de Ligação ao Cap de RNA/metabolismo , Capuzes de RNA/química , Capuzes de RNA/genética , Capuzes de RNA/metabolismo
12.
Cancers (Basel) ; 13(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34944805

RESUMO

The translation of RNA into protein is a dynamic process which is heavily regulated during normal cell physiology and can be dysregulated in human malignancies. Its dysregulation can impact selected groups of RNAs, modifying protein levels independently of transcription. Integral to their suitability for translation, RNAs undergo a series of maturation steps including the addition of the m7G cap on the 5' end of RNAs, splicing, as well as cleavage and polyadenylation (CPA). Importantly, each of these steps can be coopted to modify the transcript signal. Factors that bind the m7G cap escort these RNAs through different steps of maturation and thus govern the physical nature of the final transcript product presented to the translation machinery. Here, we describe these steps and how the major m7G cap-binding factors in mammalian cells, the cap binding complex (CBC) and the eukaryotic translation initiation factor eIF4E, are positioned to chaperone transcripts through RNA maturation, nuclear export, and translation in a transcript-specific manner. To conceptualize a framework for the flow and integration of this genetic information, we discuss RNA maturation models and how these integrate with translation. Finally, we discuss how these processes can be coopted by cancer cells and means to target these in malignancy.

13.
Biomol NMR Assign ; 15(2): 323-328, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33870481

RESUMO

The human UDP-glucuronosyltransferase (UGT) family of enzymes catalyze the covalent addition of glucuronic acid to a wide range of compounds, generally rendering them inactive. Although important for clearance of environmental toxins and metabolites, UGT activation can lead to inappropriate glucuronidation of therapeutics underlying drug resistance. Indeed, 50% of medications are glucuronidated. To better understand this mode of resistance, we studied the UGT2B7 enzyme associated with glucuronidation of cancer drugs such as Tamoxifen and Sorafenib. We report 1H, 13C and 15N backbone (> 90%) and side-chain assignments (~ 78% completeness according to CYANA) for the C-terminal domain of UGT2B7 (UGT2B7-C). Given the biomedical importance of this family of enzymes, our assignments will provide a key tool for improving understanding of the biochemical basis for substrate selectivity and other aspects of enzyme activity. This in turn will inform on drug design to overcome UGT-related drug resistance.


Assuntos
Ressonância Magnética Nuclear Biomolecular
14.
Cancers (Basel) ; 13(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375634

RESUMO

Export of mRNAs from the nucleus to the cytoplasm is a key regulatory step in the expression of proteins. mRNAs are transported through the nuclear pore complex (NPC). Export of mRNAs responds to a variety of cellular stimuli and stresses. Revelations of the specific effects elicited by NPC components and associated co-factors provides a molecular basis for the export of selected RNAs, independent of bulk mRNA export. Aberrant RNA export has been observed in primary human cancer specimens. These cargo RNAs encode factors involved in nearly all facets of malignancy. Indeed, the NPC components involved in RNA export as well as the RNA export machinery can be found to be dysregulated, mutated, or impacted by chromosomal translocations in cancer. The basic mechanisms associated with RNA export with relation to export machinery and relevant NPC components are described. Therapeutic strategies targeting this machinery in clinical trials is also discussed. These findings firmly position RNA export as a targetable feature of cancer along with transcription and translation.

15.
Proc Natl Acad Sci U S A ; 117(43): 26773-26783, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33055213

RESUMO

Methyl-7-guanosine (m7G) "capping" of coding and some noncoding RNAs is critical for their maturation and subsequent activity. Here, we discovered that eukaryotic translation initiation factor 4E (eIF4E), itself a cap-binding protein, drives the expression of the capping machinery and increased capping efficiency of ∼100 coding and noncoding RNAs. To quantify this, we developed enzymatic (cap quantification; CapQ) and quantitative cap immunoprecipitation (CapIP) methods. The CapQ method has the further advantage that it captures information about capping status independent of the type of 5' cap, i.e., it is not restricted to informing on m7G caps. These methodological advances led to unanticipated revelations: 1) Many RNA populations are inefficiently capped at steady state (∼30 to 50%), and eIF4E overexpression increased this to ∼60 to 100%, depending on the RNA; 2) eIF4E physically associates with noncoding RNAs in the nucleus; and 3) approximately half of eIF4E-capping targets identified are noncoding RNAs. eIF4E's association with noncoding RNAs strongly positions it to act beyond translation. Coding and noncoding capping targets have activities that influence survival, cell morphology, and cell-to-cell interaction. Given that RNA export and translation machineries typically utilize capped RNA substrates, capping regulation provides means to titrate the protein-coding capacity of the transcriptome and, for noncoding RNAs, to regulate their activities. We also discovered a cap sensitivity element (CapSE) which conferred eIF4E-dependent capping sensitivity. Finally, we observed elevated capping for specific RNAs in high-eIF4E leukemia specimens, supporting a role for cap dysregulation in malignancy. In all, levels of capping RNAs can be regulated by eIF4E.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Guanosina/análogos & derivados , Capuzes de RNA/metabolismo , RNA Mensageiro/metabolismo , Linhagem Celular Tumoral , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/genética , Guanosina/química , Guanosina/genética , Guanosina/metabolismo , Humanos , Polirribossomos/metabolismo , Capuzes de RNA/química , Capuzes de RNA/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Transcriptoma/genética
16.
RNA Biol ; 17(9): 1239-1251, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32496897

RESUMO

Translation initiation is a critical facet of gene expression with important impacts that underlie cellular responses to stresses and environmental cues. Its dysregulation in many diseases position this process as an important area for the development of new therapeutics. The gateway translation factor eIF4E is typically considered responsible for 'global' or 'canonical' m7G cap-dependent translation. However, eIF4E impacts translation of specific transcripts rather than the entire translatome. There are many alternative cap-dependent translation mechanisms that also contribute to the translation capacity of the cell. We review the diversity of these, juxtaposing more recently identified mechanisms with eIF4E-dependent modalities. We also explore the multiplicity of functions played by translation factors, both within and outside protein synthesis, and discuss how these differentially contribute to their ultimate physiological impacts. For comparison, we discuss some modalities for cap-independent translation. In all, this review highlights the diverse mechanisms that engage and control translation in eukaryotes.


Assuntos
Regulação da Expressão Gênica , Biossíntese de Proteínas , Capuzes de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Animais , Suscetibilidade a Doenças , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/metabolismo , Humanos , Metilação , Modelos Biológicos , Modelos Moleculares , Conformação Molecular , Iniciação Traducional da Cadeia Peptídica , Processamento de Proteína Pós-Traducional , RNA Mensageiro/química , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Estresse Fisiológico/genética , Relação Estrutura-Atividade , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
17.
Proc Natl Acad Sci U S A ; 116(48): 24056-24065, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31712417

RESUMO

Viruses have transformed our understanding of mammalian RNA processing, including facilitating the discovery of the methyl-7-guanosine (m7G) cap on the 5' end of RNAs. The m7G cap is required for RNAs to bind the eukaryotic translation initiation factor eIF4E and associate with the translation machinery across plant and animal kingdoms. The potyvirus-derived viral genome-linked protein (VPg) is covalently bound to the 5' end of viral genomic RNA (gRNA) and associates with host eIF4E for successful infection. Divergent models to explain these observations proposed either an unknown mode of eIF4E engagement or a competition of VPg for the m7G cap-binding site. To dissect these possibilities, we resolved the structure of VPg, revealing a previously unknown 3-dimensional (3D) fold, and characterized the VPg-eIF4E complex using NMR and biophysical techniques. VPg directly bound the cap-binding site of eIF4E and competed for m7G cap analog binding. In human cells, VPg inhibited eIF4E-dependent RNA export, translation, and oncogenic transformation. Moreover, VPg formed trimeric complexes with eIF4E-eIF4G, eIF4E bound VPg-luciferase RNA conjugates, and these VPg-RNA conjugates were templates for translation. Informatic analyses revealed structural similarities between VPg and the human kinesin EG5. Consistently, EG5 directly bound eIF4E in a similar manner to VPg, demonstrating that this form of engagement is relevant beyond potyviruses. In all, we revealed an unprecedented modality for control and engagement of eIF4E and show that VPg-RNA conjugates functionally engage eIF4E. As such, potyvirus VPg provides a unique model system to interrogate eIF4E.


Assuntos
Fator de Iniciação 4E em Eucariotos/química , Potyvirus/genética , Biossíntese de Proteínas/fisiologia , RNA/química , Ribonucleoproteínas/química , Proteínas Virais/química , Sítios de Ligação , Ligação Competitiva , Linhagem Celular , Fator de Iniciação 4E em Eucariotos/metabolismo , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Dobramento de Proteína , Capuzes de RNA/química , Processamento Pós-Transcricional do RNA , Ribonucleoproteínas/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/fisiologia
18.
Cell Rep ; 27(5): 1397-1408.e4, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31042468

RESUMO

The eukaryotic translation initiation factor eIF4E is nuclear and cytoplasmic where it plays roles in export and translation of specific transcripts, respectively. When we were studying its mRNA export activity, we unexpectedly discovered that eIF4E drives the protein expression of elements of the 3'-end core cleavage complex involved in cleavage and polyadenylation (CPA), including CPSF3, the enzyme responsible for cleavage, as well as its co-factors CPSF1, CPSF2, CPSF4, Symplekin, WDR33, and FIP1L1. Using multiple strategies, we demonstrate that eIF4E stimulates 3'-end cleavage of selected RNAs. eIF4E physically interacts with CPSF3, CPSF1, and uncleaved target RNA, suggesting it acts directly and indirectly on the pathway. Through these effects, eIF4E can generate better substrates for its mRNA export and translation activities. Thus, we identified an unanticipated function for eIF4E in 3'-end processing of specific target RNAs, and this function could potentially affect the expression of a broad range of oncoproteins.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Humanos , Ligação Proteica , RNA Mensageiro/genética
19.
Blood ; 133(11): 1167-1168, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872269
20.
ACS Chem Biol ; 14(3): 348-355, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30763062

RESUMO

Cancer therapies are plagued by resistance. Previously, we discovered a novel form of cancer drug resistance where the Glioma-associated protein 1 (GLI1) elevates UGT1A glucuronidation enzymes, thereby glucuronidating cytarabine and ribavirin, leading to resistance in leukemia patients. Here, we demonstrate that GLI1 imparts resistance to ∼40 compounds, including FDA-approved drugs with disparate chemotypes ( e.g., methotrexate and venetoclax). GLI1 indirectly elevates UGT1As via the chaperone calreticulin, which is required for resistance. Further, we demonstrate that resistant cells are more sensitive to ATP inhibitors, suggesting an Achilles' heel, which could be exploited in the future. In all, we identify GLI1-inducible glucuronidation as a broad-spectrum multidrug resistance pathway.


Assuntos
Antimetabólitos Antineoplásicos/química , Citarabina/química , Glucuronosiltransferase/metabolismo , Bibliotecas de Moléculas Pequenas/química , Proteína GLI1 em Dedos de Zinco/antagonistas & inibidores , Trifosfato de Adenosina/antagonistas & inibidores , Antimetabólitos Antineoplásicos/metabolismo , Calreticulina/metabolismo , Citarabina/metabolismo , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Bibliotecas de Moléculas Pequenas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA