RESUMO
Metal and metalloid concentrations in Black Triggerfish, Melichthys niger (Tetraodontiformes, Balistidae), and sediments from Trindade Island, an isolated, pristine, and understudied environment in the Southwestern Atlantic Ocean were determined. Several elements were detected in sediment, including Rare Earth Elements (REE). Hg and the REE Nd were, however, not detected. Elements determined in triggerfish are indicative of systemic circulation and the presence of toxic elements indicates an exposure source. No significant associations were detected between elements in fish organs and total length, suggesting no bioaccumulation with age, nor between organs and sediment, indicating probable dietary origin. Biliary excretion indicated a local chronic source of As and Cd and non-quantifiable REE elimination. Hg concentrations were over thresholds that affect fish biochemistry processes. These baseline data are valuable concerning elemental contamination in remote oceanic islands, with the potential to be applied to future biomonitoring efforts and conservation measures for reef ecosystems worldwide.
Assuntos
Mercúrio , Metaloides , Metais Terras Raras , Tetraodontiformes , Animais , Ecossistema , Metaloides/análise , Níger , Metais , Oceano Atlântico , Monitoramento AmbientalRESUMO
This study comprises a novel report on subcellular metal partitioning and metallothionein (MT) metal detoxification efforts in lesser numbfish (Narcine brasiliensis) electric ray specimens, as well as the first assessment on MT contents in any ray electric organ. Individuals sampled from an area in Southeastern Brazil affected by the Mariana dam rupture disaster were assessed concerning subcellular metal partitioning and MT metal-detoxification in the liver, gonads, electric organ and muscle of both adults and embryos. Yolk was also assessed when available. Relative total and heat-stable (bioavailable) metal and metalloid comparisons between adults and embryos in different developmental stages demonstrates maternal transfer of both total and bioavailable metals and significant MT associations demonstrate the detoxification of As, Ag, Mn, Ni, Cd, Co, Cu, Se and V through this biochemical pathway. Our findings expand the lacking ecotoxicological assessments for this near-threatened species and indicates significant ecological concerns, warranting further biomonitoring efforts.
Assuntos
Desastres , Poluentes Químicos da Água , Animais , Brasil , Metais/metabolismo , Torpedo/metabolismo , Poluentes Químicos da Água/químicaRESUMO
Marine bivalves have been widely applied as environmental contamination bioindicators, although studies concerning tropical species are less available compared to temperate climate species. Assessments regarding Perna perna mytilid mussels, in particular, are scarce, even though this is an extremely important species in economic terms in tropical countries, such as Brazil. To this end, Perna perna mytilids were sampled from two tropical bays in Southeastern Brazil, one anthropogenically impacted and one previously considered a reference site for metal contamination. Gill metallothionein (MT), reduced glutathione (GSH), carboxylesterase (CarbE) and lipid peroxidation (LPO) were determined by UV-vis spectrophotometry, and metal and metalloid contents were determined by inductively coupled plasma mass spectrometry (ICP-MS). Metalloprotein metal detoxification routes in heat-stable cellular gill fractions were assessed by size exclusion high performance chromatography (SEC-HPLC) coupled to an ICP-MS. Several associations between metals and oxidative stress endpoints were observed at all four sampling sites through a Principal Component Analysis. As, Cd, Ni and Se contents, in particular, seem to directly affect CarbE activity. MT is implicated in playing a dual role in both metal detoxification and radical oxygen species scavenging. Differential SEC-HPLC-ICP-MS metal-binding profiles, and, thus, detoxification mechanisms, were observed, with probable As-, Cu- and Ni-GSH complexation and binding to low molecular weight proteins. Perna perna mussels were proven adequate tropical bioindicators, and further monitoring efforts are recommended, due to lack of data regarding biochemical metal effects in tropical species. Integrated assessments, as performed herein demonstrate, are invaluable in evaluating contaminated aquatic environments, resulting in more accurate ecological risk assessments.
Assuntos
Metais/toxicidade , Perna (Organismo)/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Baías , Brasil , Monitoramento Ambiental , Brânquias/efeitos dos fármacos , Glutationa/metabolismo , Metaloproteínas/metabolismo , Metalotioneína/metabolismo , Metais/análise , Metais/metabolismo , Perna (Organismo)/efeitos dos fármacos , Alimentos Marinhos/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismoRESUMO
Titanium (Ti), used in many dailyuse products, such as shampoos and sunscreen filters, in the form of TiO2 nanoparticles (NPs), may elicit adverse marine biota effects. Marine mammal Ti data is scarce, and subcellular distribution and detoxification information is non-existent. Ti concentrations and metalloprotein detoxification in Pontoporia blainvillei and Steno bredanensis dolphins from Southeastern Brazil were assessed. Metallothionein (MT) concentrations were determined spectrophotometrically, total and subcellular Ti, by ICP-MS and detoxification, by HPLC-ICP-MS. Ti detoxification occurred through MT complexation. Statistical Ti-MT associations were observed in S. bredanensis liver, indicating TiO2 NPs contamination, as Ti binds to MT only as NPs. MT-Ti correlations were observed for both the coastal (P. blainvillei) and offshore (S. bredanensis) dolphins, evidencing oceanic TiO2 diffusion. Ti detoxification through binding to reduced glutathione occurred in both species. Thermostable subcellular fractions are a valuable tool for cetacean Ti detoxification assessments and should be applied to conservation efforts.
Assuntos
Golfinhos/metabolismo , Titânio/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Brasil , Inativação MetabólicaRESUMO
This short note aims to report in detail a preliminary assessment of the concentrations of Cd, Hg and Pb in tissues of blue crabs Callinectes danae collected from the Cananéia-Iguape-Peruíbe estuarine complex (CIP), in the South of São Paulo State coast, Brazil. In October 2014, blue crabs were collected from CIP. Tissues were removed by dissection and metal determination was performed by GF-AAS and CV-AAS. According to statistical analysis, Pb and Cd concentrations in gills were significantly higher than those found in muscles and hepatopancreas, respectively. There were no significant differences in Hg concentrations between samples. Cd, Hg and Pb concentrations in gills and hepatopancreas were lower than those reported in a previous study performed at CIP. However, Cd concentration in hepatopancreas was higher than the Brazilian limit for consumption and new efforts to monitor Cd concentrations in C. danae tissues must be performed.
Assuntos
Monitoramento Biológico/métodos , Braquiúros/química , Estuários , Metais Pesados/análise , Mineração , Poluentes Químicos da Água/análise , Animais , Brasil , Brânquias/química , Hepatopâncreas/química , Músculos/químicaRESUMO
Metals are subject to internal subcellular compartmentalization, altering their bioavailability. Thus, subcellular metal assessments are crucial in biomonitoring efforts. Metal distribution in three subcellular fractions (insoluble - ISF, thermolabile - TLF and thermostable - TSF) were determined by ICP-MS in Steno bredanensis specimens from Southeastern Brazil. Associations between metals, metallothionein (MT) and reduced glutathione (GSH) were also investigated. Differential metal-detoxification mechanisms were observed. MT detoxification was mostly noted for As, Cd, and Pb, while Cu, Cr, Hg, Ni, Se and Ti displayed lower MT-associations. Fe, Zn and Se, on the other hand, were poorly associated to MT, and mostly present in the ISF, indicating low bioavailability. This is the first report on subcellular Sn and Ti distribution in cetaceans and the first in this species in Brazil. Potential protective roles of essential metals against toxic elements are postulated. This study indicates that important biochemical detoxification information is obtained through subcellular fraction analyses in marine mammals.
Assuntos
Golfinhos/metabolismo , Monitoramento Ambiental/métodos , Metalotioneína/metabolismo , Metais/metabolismo , Frações Subcelulares/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Brasil , Glutationa/metabolismo , Inativação Metabólica , Metais Pesados/análise , Estanho/metabolismo , Titânio/metabolismoRESUMO
This study investigates the combined effects of waterborne copper exposure and acute temperature change on oxygen consumption and the oxidative stress biomarkers, glutathione S-transferase (GST) and glutathione peroxidase (GPx), in the gills and hepatopancreas of the fiddler crab Minuca rapax. Crabs held at 25⯰C were acclimated to 0 (control), 50, 250 or 500⯵gâ¯Cuâ¯L-1 for 21â¯days, and were then subjected to 15, 25 and 35⯰C for 24â¯h. Aerial oxygen consumption rates of crabs in copper free media increased with increasing temperature from 15 to 35⯰C, Q10 values reaching ≈3. Crabs exposed to increasing copper concentrations exhibited variable responses, Q10 values falling to ≈1.5. Copper had no effect on oxygen consumption at 25⯰C. However, at 35⯰C, rates decreased in a clear concentration-response manner in the copper exposed crabs, revealing impaired aerobic capability. At 15⯰C, oxygen consumption rates increased with copper concentration, except for a decrease at 500⯵gâ¯Cuâ¯L-1. Gill GST activity was ≈2-fold that of the hepatopancreas, while hepatopancreas GPx activity was 3-fold that of the gills. Gill GST activities were reduced by copper exposure only at 25⯰C while hepatopancreas GST activities were altered by copper at all temperatures. Hepatopancreas GST and GPx activities increased in crabs exposed to copper at 35⯰C, revealing oxidative stress induction. Hepatopancreas GST and GPx activities were reduced in copper exposed crabs at 15⯰C, suggesting a diminished capability to mitigate the effects of copper exposure at low temperature. These findings reveal that copper exposure increases oxygen consumption at low temperatures but decreases consumption at high temperature. Hepatopancreas GPx activities decreased at low temperature and increased at high temperature. These novel findings demonstrate that the interaction between copper exposure and temperature should be considered when evaluating biomarker activities in semi-terrestrial crabs.
Assuntos
Braquiúros/efeitos dos fármacos , Braquiúros/fisiologia , Cobre/toxicidade , Consumo de Oxigênio/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Feminino , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Hepatopâncreas/efeitos dos fármacos , Hepatopâncreas/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Temperatura , Poluentes Químicos da Água/toxicidadeRESUMO
One of the metal detoxifying mechanisms that occurs in fish is metallothionein (MT) induction and metal binding. Hepatic MT induction has been well described, but biliary MT metal detoxification has only recently been described in fish. In this scenario, metal-metal interactions have been increasingly evaluated to further understand the behavior of these contaminants regarding homeostasis and biological functions, as well as their toxic effects. Studies, however, have been mainly conducted concerning the elemental pair Se-Hg, and scarce reports are available concerning other metal pairs. Therefore, this study aimed to evaluate biliary and hepatic MT metal detoxification mechanisms in a territorial neotropical cichlid, Geophagus brasiliensis. Fish were sampled from the anthropogenically impacted estuarine Rodrigo de Freitas Lagoon, located in Southern Rio de Janeiro, and trace elements and MT were determined by inductively coupled plasma mass spectrometry (ICP-MS) and UV-Vis spectrophotometry, respectively, in fish liver and bile. MT in bile were significantly lower than in liver. Significant differences between bile and liver were observed for many trace elements, and, although most were higher in liver, Cd and Ni were significantly higher in bile, indicating efficient excretion from the body via the biliary route. A significant correlation was observed between MT and Fe in bile, and between MT in liver and Cu and Zn in bile. Molar ratio calculations demonstrated protective elements effects against Al, As, Cd, Hg, Pb and V in both bile and liver, as well as some novel interrelationships, indicating the importance of these investigations regarding the elucidation of element detoxifying mechanisms. Furthermore, investigation of other elemental associations may aid in decision-making processes regarding environmental contamination scenarios linked to public health.
Assuntos
Bile/metabolismo , Ciclídeos/metabolismo , Fígado/metabolismo , Metalotioneína/metabolismo , Oligoelementos/metabolismo , Animais , Cádmio/metabolismo , Níquel/metabolismoRESUMO
This study aimed to assess the bioaccumulation of Pb and induction of metallothionein-like proteins (MT) in Callinectes danae through single and combined dietary and waterborne exposures. Male C. danae individuals were collected in the south area of the Cananéia-Iguape-Peruíbe Protected Area (APA-CIP), in São Paulo State, Brazil. After an acclimatization period, exposure assays were performed during 7 and 14 days, at two Pb concentrations (0.5 e 2.0⯵g/g) in 4 treatments: 1) control; 2) contaminated water only; 3) contaminated food only; 4) contaminated water and food. The results indicate that C. danae is highly tolerant to Pb exposure at the evaluated concentrations. In gills, Pb bioaccumulation is more dependent of water efflux and time of exposure (higher Pb values). However, pathways act simultaneously in the induction of MT expression in this tissue. The decreases in Pb accumulation in the combined treatments and MT increases after 14 days in gills suggests that these proteins play a detoxification function in the presence of Pb. In hepatopancreas, depending on the predominance of a certain pathway or combined pathways, accumulation occured at different times. For muscle tissue, bioaccumulation was observed due to contaminated water exposure, but not dietary exposure, probably because Pb concentrations were low.
Assuntos
Braquiúros/metabolismo , Chumbo/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Brânquias/metabolismo , Hepatopâncreas/metabolismo , Chumbo/toxicidade , Masculino , Metalotioneína/metabolismo , Músculos/metabolismo , Testes de Toxicidade , Poluentes Químicos da Água/análiseRESUMO
The demand for low cost and effective materials to remove contaminants such as residues of oil spills has encouraged studies on new biosorbents produced from wastes. Considering the overgeneration of fishing residues and the necessity to provide an alternative purpose for such materials, this study aimed to evaluate squid gladius and its derivatives (ß-chitin and chitosan) as sorbents to remove marine diesel oil (MDO) from fresh and artificial seawater. It was also executed an attempted to improve their performances through a high-intensity ultrasound treatment (UT-gladius and UT-ß-chitin). All sorbents removed MDO at both salinities. Contact surface area, salinity, and water retention seemed to play a key role in the outcomes. UT-ß-chitin's performance was significantly superior to ß-chitin's and chitosan's in MDO removal at salinity 0, as well as at salinity 30, where gladius and UT-gladius also excelled. Ultrasound treatment improved the oil removal performance of UT-ß-chitin by increasing its contact surface area. This is the first report on the efficiency of gladius and UT-ß-chitin for such purpose, and brought up huge possibilities and new questions that can lead to the achievement of biosorbents of great efficiency.
Assuntos
Quitina/química , Quitosana/química , Decapodiformes , Poluição por Petróleo/análise , Petróleo/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Animais , Brasil , Salinidade , Água do Mar/químicaRESUMO
The present study aimed to investigate metal bioaccumulation in mullet (M. liza) from a tropical bay located in Southeastern Brazil, comparing a previously considered reference site to a known contaminated area of the bay, as well as to conduct human health risk assessments with regard to the consumption of this species. The metal concentrations were compared to the maximum residue level (MRL) in foods established by the different national and international regulatory agencies, and the Provisional Tolerable Daily Intake (PTDI) was determined and compared to reference values. Chromium (Cr), Zinc (Zn), Copper (Cu), Manganese (Mn), Nickel (Ni), Cadmium (Cd) and Lead (Pb) concentrations were determined in the gills, muscle and liver of 28 mullet by ICP-MS after acid digestion. Certain metals exceeded MRL guidelines established by different regulatory agencies, indicating human health risks associated to these metals. PTDI values, however, did not exceed corresponding metal values proposed by the World Health Organization. The metal concentrations found in the mullet samples indicate that the previously considered reference site is now showing signs of anthropogenic contamination.
Assuntos
Baías/química , Metais/metabolismo , Smegmamorpha/anatomia & histologia , Smegmamorpha/metabolismo , Poluentes Químicos da Água/análise , Animais , Brasil , Monitoramento Ambiental , Metais/análise , Poluentes Químicos da Água/metabolismoRESUMO
Mussel farming is an important economic activity in Brazil, and these organisms are consumed by the majority of the population in most coastal zones in the country. However, despite the increasing pollution of aquatic ecosystems in Brazil, little is known about the biochemical activity in mussels in response to metal exposure. In this context, the aim of the present study was to investigate metal and metalloid exposure effects in Perna perna mussels, by determining metal levels, the induction of metallothionein (MT) synthesis, and oxidative stress, in the form of reduced glutathione (GSH) in 3 contaminated areas from the Guanabara Bay in comparison to a reference site, Ilha Grande Bay, both in summer and winter. Metal and metalloid concentrations were also compared to Brazilian and international guidelines, to verify potential health risks to human consumers. Mussels from all sampling sites were shown to be improper for human consumption due to metal contamination, including Ilha Grande Bay, which has previously been considered a reference site. Several statistically significant correlations and seasonal differences were observed between MT, GSH and metals and metalloids in both analyzed tissues. A Discriminant Canonical Analysis indicated that the digestive gland is a better bioindicator for environmental contamination by metals and metalloids in this species and offers further proof that MT variations observed are due to metal exposure and not oxidative stress, since GSH influence for both muscle tissue and the digestive glands was non-significant in this analysis. These results show that P. perna mussels are an adequate sentinel species for metal contamination with significant effects on oxidative stress and metal exposure biomarkers. To the best of our knowledge, this is the first study to report metals, metalloids, MT and GSH levels in the muscle tissue of this species.
Assuntos
Arsênio/análise , Glutationa/análise , Metalotioneína/análise , Metais/análise , Perna (Organismo) , Poluentes Químicos da Água/análise , Animais , Baías , Brasil , Monitoramento Ambiental/métodos , Trato Gastrointestinal/química , Músculos/químicaRESUMO
The blue crab Callinectes danae is distributed throughout the Atlantic coast and this study aimed to evaluate a environmental forensics approach that could be applied at tropical estuarine systems where this species is distributed, based on the metal concentrations in its tissues. For this purpose, blue crab samples were collected in 9 sites (distributed in 3 areas) along the Santos Estuarine System, state of São Paulo, Brazil. The concentrations of Al, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn were determined in gills, hepatopancreas and muscle tissues. Sediment samples were collected and analyzed in these same sites. A data distribution pattern was identified during both sampling periods (August and December 2011). In order to validate this model, a new sampling campaign was performed in March 2013 at the Santos Estuarine System and also at Ilha Grande (state of Rio de Janeiro). These data were added to the previous database (composed of the August and December 2011 samples) and a discriminant analysis was applied. The results confirmed an environmental fingerprint for the Santos Estuarine System.
Assuntos
Braquiúros/metabolismo , Monitoramento Ambiental/métodos , Estuários , Metais/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Brasil , Feminino , Masculino , Análise Multivariada , Clima TropicalRESUMO
This study determined the concentrations of eleven metals in the blue crab, Callinectes danae, from nine sites in the Santos Estuarine System of Sao Paulo State, Brazil. The results were compared to guidelines established in the United States, Europe and Brazil for the safety of human consumers. Muscles of blue crabs were removed by dissection and concentrations of Al, Cd, Co, Cr, Cu, Fe, Hg, Mn Ni, Pb and Zn were determined. In general, the concentrations of metals were low, and the crabs were regarded as safe for human consumption. Crabs from a single site (site 4) exceeded the guidelines established by the United States and Europe, but not Brazil, for Pb, with a mean tissue concentration of 1.725 µg g(-1). With the exception of Al, Fe and Ni, significant differences were noted between sites in the concentrations of each metal in crab tissue.
Assuntos
Crustáceos/metabolismo , Estuários , Metais/farmacocinética , Poluentes Químicos da Água/farmacocinética , Animais , TurquiaRESUMO
The concentrations of metals in tissues of Callinectes danae were evaluated, aiming to determine the bioaccumulation process of this species. Gills presented the highest mean concentrations for most metals, except for Hg (Assuntos
Braquiúros/metabolismo
, Monitoramento Ambiental
, Metais/metabolismo
, Poluentes Químicos da Água/metabolismo
, Animais
, Brasil
, Feminino
, Água Doce/química
, Masculino
, Metais/análise
, Água do Mar/química
, Poluentes Químicos da Água/análise
, Poluição Química da Água/estatística & dados numéricos