RESUMO
OBJECTIVES: Tumor dosimetry with somatostatin receptor-targeted peptide receptor radionuclide therapy (SSTR-targeted PRRT) by 177Lu-DOTATATE may contribute to improved treatment monitoring of refractory meningioma. Accurate dosimetry requires reliable and reproducible pretherapeutic PET tumor segmentation which is not currently available. This study aims to propose semi-automated segmentation methods to determine metabolic tumor volume with pretherapeutic 68Ga-DOTATOC PET and evaluate SUVmean-derived values as predictive factors for tumor-absorbed dose. METHODS: Thirty-nine meningioma lesions from twenty patients were analyzed. The ground truth PET and SPECT volumes (VolGT-PET and VolGT-SPECT) were computed from manual segmentations by five experienced nuclear physicians. SUV-related indexes were extracted from VolGT-PET and the semi-automated PET volumes providing the best Dice index with VolGT-PET (Volopt) across several methods: SUV absolute-value (2.3)-threshold, adaptative methods (Jentzen, Otsu, Contrast-based method), advanced gradient-based technique, and multiple relative thresholds (% of tumor SUVmax, hypophysis SUVmean, and meninges SUVpeak) with optimal threshold optimized. Tumor-absorbed doses were obtained from the VolGT-SPECT, corrected for partial volume effect, performed on a 360° whole-body CZT-camera at 24, 96, and 168 h after administration of 177Lu-DOTATATE. RESULTS: Volopt was obtained from 1.7-fold meninges SUVpeak (Dice index 0.85 ± 0.07). SUVmean and total lesion uptake (SUVmeanxlesion volume) showed better correlations with tumor-absorbed doses than SUVmax when determined with the VolGT (respective Pearson correlation coefficients of 0.78, 0.67, and 0.56) or Volopt (0.64, 0.66, and 0.56). CONCLUSION: Accurate definition of pretherapeutic PET volumes is justified since SUVmean-derived values provide the best tumor-absorbed dose predictions in refractory meningioma patients treated by 177Lu-DOTATATE. This study provides a semi-automated segmentation method of pretherapeutic 68Ga-DOTATOC PET volumes to achieve good reproducibility between physicians. CLINICAL RELEVANCE STATEMENT: SUVmean-derived values from pretherapeutic 68Ga-DOTATOC PET are predictive of tumor-absorbed doses in refractory meningiomas treated by 177Lu-DOTATATE, justifying to accurately define pretherapeutic PET volumes. This study provides a semi-automated segmentation of 68Ga-DOTATOC PET images easily applicable in routine. KEY POINTS: ⢠SUVmean-derived values from pretherapeutic 68Ga-DOTATOC PET images provide the best predictive factors of tumor-absorbed doses related to 177Lu-DOTATATE PRRT in refractory meningioma. ⢠A 1.7-fold meninges SUVpeak segmentation method used to determine metabolic tumor volume on pretherapeutic 68Ga-DOTATOC PET images of refractory meningioma treated by 177Lu-DOTATATE is as efficient as the currently routine manual segmentation method and limits inter- and intra-observer variabilities. ⢠This semi-automated method for segmentation of refractory meningioma is easily applicable to routine practice and transferrable across PET centers.
Assuntos
Neoplasias Meníngeas , Meningioma , Tumores Neuroendócrinos , Compostos Organometálicos , Humanos , Meningioma/diagnóstico por imagem , Meningioma/radioterapia , Receptores de Somatostatina/metabolismo , Radioisótopos de Gálio , Reprodutibilidade dos Testes , Octreotida/uso terapêutico , Tomografia por Emissão de Pósitrons , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/radioterapia , Compostos Organometálicos/uso terapêutico , Tumores Neuroendócrinos/patologiaRESUMO
PURPOSE: This study aimed to compare 123I-FP-CIT SPECT imaging obtained from a 360° cadmium-zinc-telluride (CZT) camera with different focus configurations and from a conventional Anger camera. METHODS: This prospective study (NCT03980418) included patients referred to 123I-FP-CIT SPECT imaging who consecutively underwent a 30-minute acquisition on a conventional camera immediately followed by two 15-minute acquisitions on the 360°-CZT camera with, respectively, striatum and brain focus and reconstruction parameters to give equivalent contrast ratios, albeit with higher spatial resolution for the CZT camera. Tomographic count sensitivities were calculated. The images were analyzed through visual, according to 5 independent physicians, and automatic semiquantitative analyses. RESULTS: Ninety-two patients were included in this study. The 360°-CZT camera tomographic count sensitivities showed increases of +25% and +18% for striatum and brain focus, respectively, as well as significantly higher quality scores (P ≤ 0.04) in comparison to the conventional camera. The κ scores of consensual visual analysis were 0.80 and 0.85, and correlation coefficients of semiquantitative analysis for striatum uptakes were 0.75 and 0.76 for the comparisons of images obtained with the 2 cameras, with striatum and brain focus, respectively, for the CZT camera. Advanced age was the single predictor of discordant cases (10/92 [11%]) showing systematically abnormal scans with the conventional camera, potentially as a result of partial volume effect. CONCLUSIONS: Irrespective of focus mode, this high-sensitivity 360°-CZT camera provides concordant 123I-FP-CIT SPECT results when compared with a conventional camera, but with shorter acquisition times, higher image quality, and few discordant cases possibly explained by its higher spatial resolution.
Assuntos
Imagem de Perfusão do Miocárdio , Tomografia Computadorizada de Emissão de Fóton Único , Cádmio , Humanos , Análise por Pareamento , Estudos Prospectivos , Telúrio , Tropanos , ZincoRESUMO
PURPOSE: Our study assesses the routine reporting of exercise ischemia using very low-dose exercise-first myocardial perfusion SPECT in a large number of patients and under real-life conditions, by evaluating correlations with the subsequent routine reporting of coronary stenosis by angiography and with factors that predict ischemia. METHODS: Data from 13,126 routine exercise MPI reports, from 11,952 patients (31% women), using very low doses of sestamibi and a high-sensitivity cardiac CZT camera, were extracted to assess the reporting of significant MPI-ischemia (> 1 left ventricular segment), to determine the MPI normalcy rate in a group with < 5% pretest probability of coronary artery disease (CAD) (n = 378), and to assess the ability of MPI to predict a > 50% coronary stenosis in patients with available coronary angiography reports in the 3 months after the MPI (n = 713). RESULTS: The median effective patient dose was 2.51 [IQR: 1.00-4.71] mSv. The normalcy rate was 98%, and the MPI-ischemia rate was independently predicted by a known CAD, the male gender, obesity, and a < 50% LV ejection fraction, ranging from 29.5% with all these risk factors represented to 1.5% when there were no risk factors. A > 50% coronary stenosis was significantly predicted by MPI-ischemia, less significantly for mild (odds ratio [95% confidence interval]: 1.61 [1.26-1.96]) than for moderate-to-severe MPI-ischemia (4.05 [3.53-4.57]) and was also impacted by having a known CAD (2.17 [1.83-2.51]), by a submaximal exercise test (1.48 [1.15-1.81]) and being ≥ 65 years of age (1.43 [1.11-1.76]). CONCLUSION: Ischemia detected using a very low-dose exercise-first MPI protocol in a large-scale clinical cohort and under real-life routine conditions is a highly significant predictor for the subsequent reporting of coronary stenosis, although this prediction is enhanced by other variables. This weakly irradiating approach is amenable to being repeated at shorter time intervals, in target patient groups with a high probability of MPI-ischemia.
Assuntos
Doença da Artéria Coronariana , Estenose Coronária , Imagem de Perfusão do Miocárdio , Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Estenose Coronária/diagnóstico por imagem , Teste de Esforço/métodos , Feminino , Humanos , Masculino , Imagem de Perfusão do Miocárdio/métodos , Perfusão , Tomografia Computadorizada de Emissão de Fóton Único/métodosRESUMO
ABSTRACT: 18F-FDG PET/CT imaging series were acquired on a 64-year-old woman with refractory diffuse large B lymphoma to monitor chimeric antigen receptor (CAR) T-cell therapy. Because of a clinical deterioration, 18F-FDG PET/CT performed 8 days after CAR T-cell therapy suggested an early flare-up phenomenon with new lymph node involvement, lymph node progression while a decrease in metabolic tumor volume. The 18F-FDG PET/CT 1 month after CAR T-cell therapy confirmed this hypothesis. Pseudoprogression in solid tumors treated by immunotherapy has generally been reported later after treatment.
Assuntos
Fluordesoxiglucose F18 , Linfoma , Feminino , Humanos , Imunoterapia Adotiva , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de PósitronsRESUMO
Purpose: This study aims to determine the effect of applying Point Spread Function (PSF) deconvolution, which is known to improve contrast and spatial resolution in brain 18F-FDG PET images, to the diagnostic thinking efficacy in Alzheimer's disease (AD). Methods: We compared Hoffman 3-D brain phantom images reconstructed with or without PSF. The effect of PSF deconvolution on AD diagnostic clinical performance was determined from digital brain 18F-FDG PET images of AD (n = 38) and healthy (n = 35) subjects compared to controls (n = 36). Performances were assessed with SPM at the group level (p < 0.001 for the voxel) and at the individual level by visual interpretation of SPM T-maps (p < 0.005 for the voxel) by the consensual analysis of three experienced raters. Results: A mix of large hypometabolic (1,483cm3, mean value of -867 ± 492 Bq/ml) and intense hypermetabolic (902 cm3, mean value of 1,623 ± 1,242 Bq/ml) areas was observed in the PSF compared to the no PSF phantom images. Significant hypometabolic areas were observed in the AD group compared to the controls, for reconstructions with and without PSF (respectively 23.7 and 26.2 cm3), whereas no significant hypometabolic areas were observed when comparing the group of healthy subjects to the control group. At the individual level, no significant differences in diagnostic performances for discriminating AD were observed visually (sensitivity of 89 and 92% for reconstructions with and without PSF respectively, similar specificity of 74%). Conclusion: Diagnostic thinking efficacy performances for diagnosing AD are similar for 18F-FDG PET images reconstructed with or without PSF.
RESUMO
Autoimmune encephalitis (AIE) is a rare, severe, and rapidly progressive encephalopathy, and its diagnosis is challenging, especially in adolescent populations when the presentation is mainly psychiatric. Currently, cerebral 18-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) imaging is not included in the diagnosis algorithm. We describe a 16-year-old patient with probable seronegative encephalitis with catatonia for which several cerebral PET scans were relevant and helpful for diagnosis, treatment decision making, and follow-up monitoring. The patient recovered after 2 years of treatment with etiologic treatment of AIE and treatment of catatonia. This case suggests a more systematic assessment of the clinical relevance of 18F-FDG-PET imaging in probable seronegative AIE.
RESUMO
OBJECTIVE: To consolidate current understanding of detection sensitivity of brain 18F-FDG PET scans in the diagnosis of autoimmune encephalitis and to define specific metabolic imaging patterns for the most frequently occurring autoantibodies. METHODS: A systematic and exhaustive search of data available in the literature was performed by querying the PubMed/MEDLINE and Cochrane databases for the search terms: ((PET) OR (positron emission tomography)) AND ((FDG) OR (fluorodeoxyglucose)) AND ((encephalitis) OR (brain inflammation)). Studies had to satisfy the following criteria: (i) include at least ten pediatric or adult patients suspected or diagnosed with autoimmune encephalitis according to the current recommendations, (ii) specifically present 18F-FDG PET and/or morphologic imaging findings. The diagnostic 18F-FDG PET detection sensitivity in autoimmune encephalitis was determined for all cases reported in this systematic review, according to a meta-analysis following the PRISMA method, and selected publication quality was assessed with the QUADAS-2 tool. RESULTS: The search strategy identified 626 articles including references from publications. The detection sensitivity of 18F-FDG PET was 87% (80-92%) based on 21 publications and 444 patients included in the meta-analysis. We also report specific brain 18F-FDG PET imaging patterns for the main encephalitis autoantibody subtypes. CONCLUSION AND RELEVANCE: Brain 18F-FDG PET has a high detection sensitivity and should be included in future diagnostic autoimmune encephalitis recommendations. Specific metabolic 18F-FDG PET patterns corresponding to the main autoimmune encephalitis autoantibody subtypes further enhance the value of this diagnostic.
Assuntos
Encefalite , Doença de Hashimoto , Adulto , Encéfalo/diagnóstico por imagem , Criança , Encefalite/diagnóstico por imagem , Fluordesoxiglucose F18 , Doença de Hashimoto/diagnóstico por imagem , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Compostos RadiofarmacêuticosRESUMO
OBJECTIVE: The aim of this study was to compare brain perfusion SPECT obtained from a 360° CZT and a conventional Anger camera. METHODS: The 360° CZT camera utilizing a brain configuration, with 12 detectors surrounding the head, was compared to a 2-head Anger camera for count sensitivity and image quality on 30-min SPECT recordings from a brain phantom and from 99mTc-HMPAO brain perfusion in 2 groups of 21 patients investigated with the CZT and Anger cameras, respectively. Image reconstruction was adjusted according to image contrast for each camera. RESULTS: The CZT camera provided more than 2-fold increase in count sensitivity, as compared with the Anger camera, as well as (1) lower sharpness indexes, giving evidence of higher spatial resolution, for both peripheral/central brain structures, with respective median values of 5.2%/3.7% versus 2.4%/1.9% for CZT and Anger camera respectively in patients (p < 0.01), and 8.0%/6.9% versus 6.2%/3.7% on phantom; and (2) higher gray/white matter contrast on peripheral/central structures, with respective ratio median values of 1.56/1.35 versus 1.11/1.20 for CZT and Anger camera respectively in patients (p < 0.05), and 2.57/2.17 versus 1.40/1.12 on phantom; and (3) no change in noise level. Image quality, scored visually by experienced physicians, was also significantly higher on CZT than on the Anger camera (+ 80%, p < 0.01), and all these results were unchanged on the CZT images obtained with only a 15 min recording time. CONCLUSION: The 360° CZT camera provides brain perfusion images of much higher quality than a conventional Anger camera, even with high-speed recordings, thus demonstrating the potential for repositioning brain perfusion SPECT to the forefront of brain imaging.
Assuntos
Encéfalo/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Imagem Corporal Total/instrumentação , Imagem Corporal Total/métodos , Idoso de 80 Anos ou mais , Encéfalo/patologia , Cádmio , Feminino , Humanos , Aumento da Imagem , ZincoRESUMO
INTRODUCTION: This study aims to reveal the feasibility and potential of molecular connectivity based on neurotransmission in comparison with the metabolic connectivity with an application to dopaminergic pathways. For this purpose, we propose to compare the neurotransmission connectivity findings using 123I-FP-CIT SPECT and 18F-FDOPA PET with the metabolic connectivity findings using 18F-FDG PET. METHODS: 18F-FDG PET and 123I-FP-CIT SPECT images from 47 subjects and 18F-FDOPA PET images from 177 subjects, who had no neurological or psychiatric disorders, were studied. Interregional correlation analyses were performed at the group level to determine the midbrain's connectivity via glucose metabolic rate using 18F-FDG PET and via dopaminergic binding potential using 123I-FP-CIT SPECT and 18F-FDOPA PET. SPM-T maps of each radiotracer were generated, and masks used to highlight the significant differences obtained among the imaging modalities and targets. RESULTS: The three dopaminergic pathways (i.e., nigrostriatal, mesolimbic, and mesocortical) were identified by 18F-FDG PET (1599 voxels, with a Tmax value of 12.6), 123I-FP-CIT SPECT (1120 voxels, with Tmax value of 5.1), and 18F-FDOPA PET (6054 voxels, with Tmax value of 11.7) for a T voxel threshold of 5.10, 2.80, and 5.10, respectively. Using the same T voxel threshold of 5.10, 18F-FDOPA PET showed more specific findings than 18F-FDG PET with less voxels identified outside these pathways (- 9323 voxels), whereas no significant voxels were obtained with 123I-FP-CIT SPECT at this threshold. CONCLUSION: The present study illustrates the feasibility and interest in using molecular connectivity with 18F-FDOPA PET for dopaminergic pathways. Such analyses could be applied to specific diseases involving the dopaminergic system.