Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Alzheimers Dis ; 93(1): 151-167, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970909

RESUMO

BACKGROUND: Clearance of tau seeds by immunization with tau antibodies is currently evaluated as therapeutic strategy to block the spreading of tau pathology in Alzheimer's disease and other tauopathies. Preclinical evaluation of passive immunotherapy is performed in different cellular culture systems and in wild-type and human tau transgenic mouse models. Depending on the preclinical model used, tau seeds or induced aggregates can either be of mouse, human or mixed origin. OBJECTIVE: We aimed to develop human and mouse tau-specific antibodies to discriminate between the endogenous tau and the introduced form in preclinical models. METHODS: Using hybridoma technology, we developed human and mouse tau-specific antibodies that were then used to develop several assays to specifically detect mouse tau. RESULTS: Four antibodies, mTau3, mTau5, mTau8, and mTau9, with a high degree of specificity for mouse tau were identified. Additionally, their potential application in highly sensitive immunoassays to measure tau in mouse brain homogenate and cerebrospinal fluid is illustrated, as well as their application for specific endogenous mouse tau aggregation detection. CONCLUSION: The antibodies reported here can be very important tools to better interpret the results obtained from different model systems as well as to study the role of endogenous tau in tau aggregation and pathology observed in the diverse mouse models available.


Assuntos
Doença de Alzheimer , Tauopatias , Camundongos , Humanos , Animais , Proteínas tau/metabolismo , Tauopatias/patologia , Doença de Alzheimer/patologia , Camundongos Transgênicos , Modelos Animais de Doenças , Anticorpos Monoclonais , Encéfalo/patologia
2.
Neurobiol Dis ; 154: 105365, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33848635

RESUMO

The imbalance between production and clearance of amyloid ß (Aß) peptides and their resulting accumulation in the brain is an early and crucial step in the pathogenesis of Alzheimer's disease (AD). Therefore, Aß is strongly positioned as a promising and extensively validated therapeutic target for AD. Investigational disease-modifying approaches aiming at reducing cerebral Aß concentrations include prevention of de novo production of Aß through inhibition of ß-site amyloid precursor protein cleaving enzyme 1 (BACE1), and clearance of Aß deposits via passive Aß immunotherapy. We have developed a novel, high affinity antibody against Aß peptides bearing a pyroglutamate residue at amino acid position 3 (3pE), an Aß species abundantly present in plaque deposits in AD brains. Here, we describe the preclinical characterization of this antibody, and demonstrate a significant reduction in amyloid burden in the absence of microhemorrhages in different mouse models with established plaque deposition. Moreover, we combined antibody treatment with chronic BACE1 inhibitor treatment and demonstrate significant clearance of pre-existing amyloid deposits in transgenic mouse brain, without induction of microhemorrhages and other histopathological findings. Together, these data confirm significant potential for the 3pE-specific antibody to be developed as a passive immunotherapy approach that balances efficacy and safety. Moreover, our studies suggest further enhanced treatment efficacy and favorable safety after combination of the 3pE-specific antibody with BACE1 inhibitor treatment.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptídeos beta-Amiloides/antagonistas & inibidores , Anticorpos Monoclonais/administração & dosagem , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Imunização Passiva/métodos , Fragmentos de Peptídeos/antagonistas & inibidores , Placa Amiloide/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/imunologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/imunologia , Peptídeos beta-Amiloides/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Ácido Aspártico Endopeptidases/imunologia , Ácido Aspártico Endopeptidases/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/imunologia , Placa Amiloide/metabolismo , Resultado do Tratamento
3.
J Alzheimers Dis ; 77(4): 1397-1416, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32894244

RESUMO

BACKGROUND: As a consequence of the discovery of an extracellular component responsible for the progression of tau pathology, tau immunotherapy is being extensively explored in both preclinical and clinical studies as a disease modifying strategy for the treatment of Alzheimer's disease. OBJECTIVE: Describe the characteristics of the anti-phospho (T212/T217) tau selective antibody PT3 and its humanized variant hPT3. METHODS: By performing different immunization campaigns, a large collection of antibodies has been generated and prioritized. In depth, in vitro characterization using surface plasmon resonance, phospho-epitope mapping, and X-ray crystallography experiments were performed. Further characterization involved immunohistochemical staining on mouse- and human postmortem tissue and neutralization of tau seeding by immunodepletion assays. RESULTS AND CONCLUSION: Various in vitro experiments demonstrated a high intrinsic affinity for PT3 and hPT3 for AD brain-derived paired helical filaments but also to non-aggregated phospho (T212/T217) tau. Further functional analyses in cellular and in vivo models of tau seeding demonstrated almost complete depletion of tau seeds in an AD brain homogenate. Ongoing trials will provide the clinical evaluation of the tau spreading hypothesis in Alzheimer's disease.


Assuntos
Anticorpos Monoclonais Humanizados/metabolismo , Anticorpos Monoclonais/metabolismo , Descoberta de Drogas/métodos , Proteínas tau/metabolismo , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais Humanizados/química , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Estrutura Terciária de Proteína , Proteínas tau/química
4.
Sci Rep ; 9(1): 16363, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31705038

RESUMO

Multiple animal models have been created to gain insight into Alzheimer's disease (AD) pathology. Among the most commonly used models are transgenic mice overexpressing human amyloid precursor protein (APP) with mutations linked to familial AD, resulting in the formation of amyloid ß plaques, one of the pathological hallmarks observed in AD patients. However, recent evidence suggests that the overexpression of APP by itself can confound some of the reported observations. Therefore, we investigated in the present study the AppNL-G-Fmodel, an App knock-in (App-KI) mouse model that develops amyloidosis in the absence of APP-overexpression. Our findings at the behavioral, electrophysiological, and histopathological level confirmed an age-dependent increase in Aß1-42 levels and plaque deposition in these mice in accordance with previous reports. This had apparently no consequences on cognitive performance in a visual discrimination (VD) task, which was largely unaffected in AppNL-G-F mice at the ages tested. Additionally, we investigated neurophysiological functioning of several brain areas by phase-amplitude coupling (PAC) analysis, a measure associated with adequate cognitive functioning, during the VD task (starting at 4.5 months) and the exploration of home environment (at 5 and 8 months of age). While we did not detect age-dependent changes in PAC during home environment exploration for both the wild-type and the AppNL-G-F mice, we did observe subtle changes in PAC in the wild-type mice that were not present in the AppNL-G-F mice.


Assuntos
Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/genética , Ondas Encefálicas/fisiologia , Cognição/fisiologia , Modelos Animais de Doenças , Neurônios/patologia , Placa Amiloide/patologia , Animais , Comportamento Animal , Aprendizagem por Discriminação , Técnicas de Introdução de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Neurônios/metabolismo , Placa Amiloide/metabolismo , Percepção Visual
5.
Acta Neuropathol Commun ; 6(1): 59, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-30001207

RESUMO

Aggregation of tau protein and spreading of tau aggregates are pivotal pathological processes in a range of neurological disorders. Accumulating evidence suggests that immunotherapy targeting tau may be a viable therapeutic strategy. We have previously described the isolation of antibody CBTAU-22.1 from the memory B-cell repertoire of healthy human donors. CBTAU-22.1 was shown to specifically bind a disease-associated phosphorylated epitope in the C-terminus of tau (Ser422) and to be able to inhibit the spreading of pathological tau aggregates from P301S spinal cord lysates in vitro, albeit with limited potency. Using a combination of rational design and random mutagenesis we have derived a variant antibody with improved affinity while maintaining the specificity of the parental antibody. This affinity improved antibody showed greatly enhanced potency in a cell-based immunodepletion assay using paired helical filaments (PHFs) derived from human Alzheimer's disease (AD) brain tissue. Moreover, the affinity improved antibody limits the in vitro aggregation propensity of full length tau species specifically phosphorylated at position 422 produced by employing a native chemical ligation approach. Together, these results indicate that in addition to being able to inhibit the spreading of pathological tau aggregates, the matured antibody can potentially also interfere with the nucleation of tau which is believed to be the first step of the pathogenic process. Finally, the functionality in a P301L transgenic mice co-injection model highlights the therapeutic potential of human antibody dmCBTAU-22.1.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Anticorpos/farmacologia , Encéfalo/metabolismo , Serina/metabolismo , Proteínas tau/imunologia , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Animais , Afinidade de Anticorpos/efeitos dos fármacos , Autopsia , Encéfalo/patologia , Relação Dose-Resposta a Droga , Epitopos/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Força Atômica , Pessoa de Meia-Idade , Modelos Moleculares , Mutagênese , Mutação/genética , Fosforilação/fisiologia , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Agregação Patológica de Proteínas/terapia
6.
J Alzheimers Dis ; 65(1): 265-281, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30040731

RESUMO

The tau spreading hypothesis provides rationale for passive immunization with an anti-tau monoclonal antibody to block seeding by extracellular tau aggregates as a disease-modifying strategy for the treatment of Alzheimer's disease (AD) and potentially other tauopathies. As the biochemical and biophysical properties of the tau species responsible for the spatio-temporal sequences of seeding events are poorly defined, it is not yet clear which epitope is preferred for obtaining optimal therapeutic efficacy. Our internal tau antibody collection has been generated by immunizations with different tau species: aggregated- and non-aggregated tau and human postmortem AD brain-derived tau fibrils. In this communication, we describe and characterize a set of these anti-tau antibodies for their biochemical and biophysical properties, including binding, tissue staining by immunohistochemistry, and epitope. The antibodies bound to different domains of the tau protein and some were demonstrated to be isoform-selective (PT18 and hTau56) or phospho-selective (PT84). Evaluation of the antibodies in cellular- and in vivo seeding assays revealed clear differences in maximal efficacy. Limited proteolysis experiments support the hypothesis that some epitopes are more exposed than others in the tau seeds. Moreover, antibody efficacy seems to depend on the structural properties of fibrils purified from tau Tg mice- and postmortem human AD brain.


Assuntos
Doença de Alzheimer/patologia , Anticorpos Monoclonais/metabolismo , Encéfalo/metabolismo , Proteínas tau/imunologia , Animais , Mapeamento de Epitopos , Feminino , Células HEK293 , Humanos , Imunização Passiva , Masculino , Camundongos , Camundongos Knockout , Mutação/genética , Ressonância de Plasmônio de Superfície , Proteínas tau/deficiência , Proteínas tau/genética
7.
Acta Neuropathol Commun ; 6(1): 43, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29855358

RESUMO

Misfolding and aggregation of tau protein are closely associated with the onset and progression of Alzheimer's Disease (AD). By interrogating IgG+ memory B cells from asymptomatic donors with tau peptides, we have identified two somatically mutated VH5-51/VL4-1 antibodies. One of these, CBTAU-27.1, binds to the aggregation motif in the R3 repeat domain and blocks the aggregation of tau into paired helical filaments (PHFs) by sequestering monomeric tau. The other, CBTAU-28.1, binds to the N-terminal insert region and inhibits the spreading of tau seeds and mediates the uptake of tau aggregates into microglia by binding PHFs. Crystal structures revealed that the combination of VH5-51 and VL4-1 recognizes a common Pro-Xn-Lys motif driven by germline-encoded hotspot interactions while the specificity and thereby functionality of the antibodies are defined by the CDR3 regions. Affinity improvement led to improvement in functionality, identifying their epitopes as new targets for therapy and prevention of AD.


Assuntos
Linfócitos B/metabolismo , Imunoglobulina G/farmacologia , Cadeias Pesadas de Imunoglobulinas/metabolismo , Cadeias Leves de Imunoglobulina/metabolismo , Proteínas tau/imunologia , Proteínas tau/metabolismo , Adolescente , Adulto , Idoso , Especificidade de Anticorpos , Linfócitos B/efeitos dos fármacos , Cristalização , Relação Dose-Resposta a Droga , Feminino , Humanos , Epitopos Imunodominantes/metabolismo , Masculino , Microglia/metabolismo , Microscopia de Força Atômica , Pessoa de Meia-Idade , Modelos Moleculares , Dados de Sequência Molecular , Agregados Proteicos , Adulto Jovem
8.
Acta Neuropathol ; 129(1): 21-37, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25432317

RESUMO

The key role of APP in the pathogenesis of Alzheimer disease is well established. However, postnatal lethality of double knockout mice has so far precluded the analysis of the physiological functions of APP and the APLPs in the brain. Previously, APP family proteins have been implicated in synaptic adhesion, and analysis of the neuromuscular junction of constitutive APP/APLP2 mutant mice showed deficits in synaptic morphology and neuromuscular transmission. Here, we generated animals with a conditional APP/APLP2 double knockout (cDKO) in excitatory forebrain neurons using NexCre mice. Electrophysiological recordings of adult NexCre cDKOs indicated a strong synaptic phenotype with pronounced deficits in the induction and maintenance of hippocampal LTP and impairments in paired pulse facilitation, indicating a possible presynaptic deficit. These deficits were also reflected in impairments in nesting behavior and hippocampus-dependent learning and memory tasks, including deficits in Morris water maze and radial maze performance. Moreover, while no gross alterations of brain morphology were detectable in NexCre cDKO mice, quantitative analysis of adult hippocampal CA1 neurons revealed prominent reductions in total neurite length, dendritic branching, reduced spine density and reduced spine head volume. Strikingly, the impairment of LTP could be selectively rescued by acute application of exogenous recombinant APPsα, but not APPsß, indicating a crucial role for APPsα to support synaptic plasticity of mature hippocampal synapses on a rapid time scale. Collectively, our analysis reveals an essential role of APP family proteins in excitatory principal neurons for mediating normal dendritic architecture, spine density and morphology, synaptic plasticity and cognition.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/fisiopatologia , Plasticidade Neuronal/fisiologia , Fragmentos de Peptídeos/metabolismo , Sinapses/fisiologia , Precursor de Proteína beta-Amiloide/genética , Animais , Dendritos/patologia , Dendritos/fisiologia , Feminino , Hipocampo/patologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos Knockout , Atividade Motora/fisiologia , Neuritos/patologia , Neuritos/fisiologia , Fragmentos de Peptídeos/genética , Proteínas Recombinantes/metabolismo , Memória Espacial/fisiologia , Sinapses/patologia
9.
PLoS One ; 10(12): e0146127, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26720731

RESUMO

Alzheimer's disease and frontotemporal dementia are amongst the most common forms of dementia characterized by the formation and deposition of abnormal TAU in the brain. In order to develop a translational human TAU aggregation model suitable for screening, we transduced TAU harboring the pro-aggregating P301L mutation into control hiPSC-derived neural progenitor cells followed by differentiation into cortical neurons. TAU aggregation and phosphorylation was quantified using AlphaLISA technology. Although no spontaneous aggregation was observed upon expressing TAU-P301L in neurons, seeding with preformed aggregates consisting of the TAU-microtubule binding repeat domain triggered robust TAU aggregation and hyperphosphorylation already after 2 weeks, without affecting general cell health. To validate our model, activity of two autophagy inducers was tested. Both rapamycin and trehalose significantly reduced TAU aggregation levels suggesting that iPSC-derived neurons allow for the generation of a biologically relevant human Tauopathy model, highly suitable to screen for compounds that modulate TAU aggregation.


Assuntos
Neurônios/metabolismo , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Autofagia/fisiologia , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Humanos , Modelos Biológicos , Mutação/fisiologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Fosforilação/fisiologia , Ligação Proteica/fisiologia , Tauopatias/metabolismo
11.
J Cell Sci ; 126(Pt 21): 4856-61, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23986479

RESUMO

Proteolytic processing of amyloid-ß precursor protein (APP) generates the amyloid-ß peptide, which plays a central role in Alzheimer disease. The physiological function of APP and its proteolytic fragments, however, remains barely understood. Here we show that, on the basis of its binding characteristics, the secreted ectodomain of APP (sAPP) is a new member of the heparin-binding growth factor superfamily. Like other of its members, sAPP binds in a bivalent manner to the plasma membrane with two different subdomains. The N-terminal growth-factor-like domain (GFLD) is necessary and sufficient for protein-receptor binding, whereas the E2-domain mediates interaction with membrane-anchored heparan sulfate proteoglycans (HSPGs). The membrane-anchored HSPGs function as low-affinity co-receptors for sAPP and enhance the affinity to the sAPP receptor. Our findings provide a solid basis for the further identification of this receptor.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Glipicanas/metabolismo , Receptores de Superfície Celular/metabolismo , Sindecana-2/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Animais , Células CHO , Cricetulus , Glipicanas/genética , Humanos , Camundongos , Neurônios/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Superfície Celular/genética , Sindecana-2/genética
12.
Science ; 340(6135): 924-e, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23704554

RESUMO

Cramer et al. (Reports, 23 March 2012, p. 1503; published online 9 February 2012) tested bexarotene as a potential ß-amyloid-lowering drug for Alzheimer's disease (AD). We were not able to reproduce the described effects in several animal models. Drug formulation appears very critical. Our data call for extreme caution when considering this compound for use in AD patients.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Tetra-Hidronaftalenos/farmacologia , Tetra-Hidronaftalenos/uso terapêutico , Animais , Masculino
13.
J Biol Chem ; 287(31): 25927-40, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22692213

RESUMO

The ß-site amyloid precursor protein-cleaving enzyme BACE1 is a prime drug target for Alzheimer disease. However, the function and the physiological substrates of BACE1 remain largely unknown. In this work, we took a quantitative proteomic approach to analyze the secretome of primary neurons after acute BACE1 inhibition, and we identified several novel substrate candidates for BACE1. Many of these molecules are involved in neuronal network formation in the developing nervous system. We selected the adhesion molecules L1 and CHL1, which are crucial for axonal guidance and maintenance of neural circuits, for further validation as BACE1 substrates. Using both genetic BACE1 knock-out and acute pharmacological BACE1 inhibition in mice and cell cultures, we show that L1 and CHL1 are cleaved by BACE1 under physiological conditions. The BACE1 cleavage sites at the membrane-proximal regions of L1 (between Tyr(1086) and Glu(1087)) and CHL1 (between Gln(1061) and Asp(1062)) were determined by mass spectrometry. This work provides molecular insights into the function and the pathways in which BACE1 is involved, and it will help to predict or interpret possible side effects of BACE1 inhibitor drugs in current clinical trials.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Moléculas de Adesão Celular/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neurônios/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Animais , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/metabolismo , Células COS , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/genética , Células Cultivadas , Chlorocebus aethiops , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Molécula L1 de Adesão de Célula Nervosa/química , Molécula L1 de Adesão de Célula Nervosa/genética , Neurônios/enzimologia , Fragmentos de Peptídeos/química , Cultura Primária de Células , Inibidores de Proteases/farmacologia , Proteólise , Proteoma/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/enzimologia , Sinapses/metabolismo
14.
EMBO J ; 31(10): 2261-74, 2012 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22505025

RESUMO

The mechanisms by which mutations in the presenilins (PSEN) or the amyloid precursor protein (APP) genes cause familial Alzheimer disease (FAD) are controversial. FAD mutations increase the release of amyloid ß (Aß)42 relative to Aß40 by an unknown, possibly gain-of-toxic-function, mechanism. However, many PSEN mutations paradoxically impair γ-secretase and 'loss-of-function' mechanisms have also been postulated. Here, we use kinetic studies to demonstrate that FAD mutations affect Aß generation via three different mechanisms, resulting in qualitative changes in the Aß profiles, which are not limited to Aß42. Loss of ɛ-cleavage function is not generally observed among FAD mutants. On the other hand, γ-secretase inhibitors used in the clinic appear to block the initial ɛ-cleavage step, but unexpectedly affect more selectively Notch than APP processing, while modulators act as activators of the carboxypeptidase-like (γ) activity. Overall, we provide a coherent explanation for the effect of different FAD mutations, demonstrating the importance of qualitative rather than quantitative changes in the Aß products, and suggest fundamental improvements for current drug development efforts.


Assuntos
Doença de Alzheimer/enzimologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Amiloide/metabolismo , Presenilina-1/metabolismo , Antígenos CD/metabolismo , Caderinas/metabolismo , Receptores ErbB/metabolismo , Cinética , Receptor ErbB-4 , Receptor Notch1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA