Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Zootaxa ; 5424(3): 308-322, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38480283

RESUMO

A number of species of Chydorus Leach, 1816 (Crustacea: Cladocera) need improvements in their taxonomy much more than any other genus within the family Chydoridae Dybowsky & Grochowski, 1894 emend. Frey, 1967, which makes the systematics of the genus still a puzzle that lacks several pieces. Here, we redescribe the African species Chydorus tilhoi Rey & Saint-Jeans, 1969 and compare its morphology with that of Chydorus sphaericus (O.F. Mller, 1776). The two taxa might be easily differentiated because C. tilhoi has a single and relatively large major head pore with a wide rim, labral keel elongated with a large spine, and postabdomen with postanal part elongated, narrowing distally and with denticles near its anal margin, organized in groups. These morphological traits are absent in C. sphaericus. Chydorus tilhoi and C. sphaericus also differ in the morphology of the first (Inner Distal Lobe setae), third (exopodite proportion), and fifth (exopodite shape) limbs. Based on the literature and our observations, the limb morphology of C. tilhoi has important similarities with that of C. breviceps, C. nitidulus and C. dentifer, and their translocation to a new genus seems to be a fundamental piece in the puzzle of Chydorus.


Assuntos
Cladocera , Animais , Distribuição Animal
3.
Nat Commun ; 14(1): 8196, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081846

RESUMO

Mangroves and saltmarshes are biogeochemical hotspots storing carbon in sediments and in the ocean following lateral carbon export (outwelling). Coastal seawater pH is modified by both uptake of anthropogenic carbon dioxide and natural biogeochemical processes, e.g., wetland inputs. Here, we investigate how mangroves and saltmarshes influence coastal carbonate chemistry and quantify the contribution of alkalinity and dissolved inorganic carbon (DIC) outwelling to blue carbon budgets. Observations from 45 mangroves and 16 saltmarshes worldwide revealed that >70% of intertidal wetlands export more DIC than alkalinity, potentially decreasing the pH of coastal waters. Porewater-derived DIC outwelling (81 ± 47 mmol m-2 d-1 in mangroves and 57 ± 104 mmol m-2 d-1 in saltmarshes) was the major term in blue carbon budgets. However, substantial amounts of fixed carbon remain unaccounted for. Concurrently, alkalinity outwelling was similar or higher than sediment carbon burial and is therefore a significant but often overlooked carbon sequestration mechanism.

4.
Sci Adv ; 8(25): eabi8716, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35749499

RESUMO

Natural lakes are thought to be globally important sources of greenhouse gases (CO2, CH4, and N2O) to the atmosphere although nearly no data have been previously reported from Africa. We collected CO2, CH4, and N2O data in 24 African lakes that accounted for 49% of total lacustrine surface area of the African continent and covered a wide range of morphology and productivity. The surface water concentrations of dissolved CO2 were much lower than values attributed in current literature to tropical lakes and lower than in boreal systems because of a higher productivity. In contrast, surface water-dissolved CH4 concentrations were generally higher than in boreal systems. The lowest CO2 and the highest CH4 concentrations were observed in the more shallow and productive lakes. Emissions of CO2 may likely have been substantially overestimated by a factor between 9 and 18 in African lakes and between 6 and 26 in pan-tropical lakes.

5.
FEMS Microbiol Ecol ; 97(10)2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34468740

RESUMO

While the emissions of methane (CH4) by natural systems have been widely investigated, CH4 aquatic sinks are still poorly constrained. Here, we investigated the CH4 cycle and its interactions with nitrogen (N), iron (Fe) and manganese (Mn) cycles in the oxic-anoxic interface and deep anoxic waters of a small, meromictic and eutrophic lake, during two summertime sampling campaigns. Anaerobic CH4 oxidation (AOM) was measured from the temporal decrease of CH4 concentrations, with the addition of three potential electron acceptors (NO3-, iron oxides (Fe(OH)3) and manganese oxides (MnO2)). Experiments with the addition of either 15N-labeled nitrate (15N-NO3-) or 15N-NO3- combined with sulfide (H2S), to measure denitrification, chemolithotrophic denitrification and anaerobic ammonium oxidation (anammox) rates, were also performed. Measurements showed AOM rates up to 3.8 µmol CH4 L-1 d-1 that strongly increased with the addition of NO3- and moderately increased with the addition of Fe(OH)3. No stimulation was observed with MnO2 added. Potential denitrification and anammox rates up to 63 and 0.27 µmol N2 L-1 d-1, respectively, were measured when only 15N-NO3- was added. When H2S was added, both denitrification and anammox rates increased. Altogether, these results suggest that prokaryote communities in the redoxcline are able to efficiently use the most available substrates.


Assuntos
Metano , Nitratos , Anaerobiose , Desnitrificação , Lagos , Compostos de Manganês , Nitratos/análise , Óxidos
6.
J Contam Hydrol ; 241: 103797, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33813144

RESUMO

Aquifers under agricultural areas are considered to be an indirect source of nitrous oxide emission (N2O) to the atmosphere, which is the greenhouse gas (GHGs) characterized with the highest global warning potential and acts as a stratospheric ozone depletion agent. Previous investigations performed in the Cretaceous Hesbaye chalk aquifer in Eastern Belgium suggested that the dynamics of N2O in the aquifer is controlled by overlapping biochemical processes such as nitrification and denitrification. The current study aims to obtain better insight concerning the factors controlling the distribution of N2O concentration along a vertical dimension in the aquifer, and to capture and quantify the occurrence of nitrification and denitrification processes in the groundwater system. Low-flow groundwater sampling technique was undertaken at different depths in the aquifer to collect groundwater samples aiming at obtaining information about ambient aquifer hydrogeochemical conditions and their effect on the accumulation of GHGs. Afterwards, laboratory stable isotope experiments, using NO3- and NH4+ compounds labeled with heavy 15N isotope, were applied to quantify the rates of nitrification and denitrification processes. Ambient studies suggest that the occurrence of N transformation was related to denitrification while laboratory incubation experiments did not detect it. Such controversial results might be explained by the discrepancy between real aquifer conditions and lab design studies. Thus, additional in situ tracer experiments should be carried out in areas where natural groundwater fluxes do not flush the injected tracer too rapidly. In addition, it would be useful to conduct microbiological studies to obtain better insight into the nature of subsurface biofilm biotope.


Assuntos
Água Subterrânea , Óxido Nitroso , Bélgica , Carbonato de Cálcio , Desnitrificação , Laboratórios , Nitrificação , Óxido Nitroso/análise
7.
Sci Rep ; 11(1): 1597, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452366

RESUMO

In the ferruginous and anoxic early Earth oceans, photoferrotrophy drove most of the biological production before the advent of oxygenic photosynthesis, but its association with ferric iron (Fe3+) dependent anaerobic methane (CH4) oxidation (AOM) has been poorly investigated. We studied AOM in Kabuno Bay, a modern analogue to the Archean Ocean (anoxic bottom waters and dissolved Fe concentrations > 600 µmol L-1). Aerobic and anaerobic CH4 oxidation rates up to 0.12 ± 0.03 and 51 ± 1 µmol L-1 d-1, respectively, were put in evidence. In the Fe oxidation-reduction zone, we observed high concentration of Bacteriochlorophyll e (biomarker of the anoxygenic photoautotrophs), which co-occurred with the maximum CH4 oxidation peaks, and a high abundance of Candidatus Methanoperedens, which can couple AOM to Fe3+ reduction. In addition, comparison of measured CH4 oxidation rates with electron acceptor fluxes suggest that AOM could mainly rely on Fe3+ produced by photoferrotrophs. Further experiments specifically targeted to investigate the interactions between photoferrotrophs and AOM would be of considerable interest. Indeed, ferric Fe3+-driven AOM has been poorly envisaged as a possible metabolic process in the Archean ocean, but this can potentially change the conceptualization and modelling of metabolic and geochemical processes controlling climate conditions in the Early Earth.

9.
Nat Commun ; 11(1): 1627, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32242076

RESUMO

Inland waters (rivers, lakes and ponds) are important conduits for the emission of terrestrial carbon in Arctic permafrost landscapes. These emissions are driven by turnover of contemporary terrestrial carbon and additional pre-aged (Holocene and late-Pleistocene) carbon released from thawing permafrost soils, but the magnitude of these source contributions to total inland water carbon fluxes remains unknown. Here we present unique simultaneous radiocarbon age measurements of inland water CO2, CH4 and dissolved and particulate organic carbon in northeast Siberia during summer. We show that >80% of total inland water carbon was contemporary in age, but pre-aged carbon contributed >50% at sites strongly affected by permafrost thaw. CO2 and CH4 were younger than dissolved and particulate organic carbon, suggesting emissions were primarily fuelled by contemporary carbon decomposition. Our findings reveal that inland water carbon emissions from permafrost landscapes may be more sensitive to changes in contemporary carbon turnover than the release of pre-aged carbon from thawing permafrost.

10.
Sci Total Environ ; 630: 1381-1393, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29554758

RESUMO

We investigated plankton metabolism and its influence on carbon dioxide (CO2) dynamics in a central Amazon floodplain lake (Janauacá, 3°23' S, 60°18' W) from September 2015 to May 2016, including a period with exceptional drought. We made diel measurements of CO2 emissions to the atmosphere with floating chambers and depth profiles of temperature and CO2 partial pressure (pCO2) at two sites with differing wind exposure and proximity to vegetated habitats. Dissolved oxygen (DO) concentrations were monitored continuously during day and night in clear and dark chambers with autonomous optical sensors to evaluate plankton metabolism. Overnight community respiration (CR), and gross primary production (GPP) rates were higher in clear chambers and positively correlated with chlorophyll-a (Chl-a). CO2 air-water fluxes varied over 24-h periods with changes in thermal structure and metabolism. Most net daily CO2 fluxes during low water and mid-rising water at the wind exposed site were into the lake as a result of high rates of photosynthesis. All other measurements indicated net daily release to the atmosphere. Average GPP rates (6.8gCm-2d-1) were high compared with other studies in Amazon floodplain lakes. The growth of herbaceous plants on exposed sediment during an exceptional drought led to large carbon inputs when these areas were flooded, enhancing CR, pCO2, and CO2 fluxes. During the period when the submerged herbaceous vegetation decayed phytoplankton abundance increased and photosynthetic uptake of CO2 occurred. While planktonic metabolism was often autotrophic (GPP:CR>1), CO2 out-gassing occurred during most periods investigated indicating other inputs of carbon such as sediments or soils and wetland plants.

11.
Sci Total Environ ; 619-620: 1579-1588, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29128121

RESUMO

This work aims to (1) identify the most conductive conditions for the generation of greenhouses gases (GHGs) in groundwater (e.g., hydrogeological contexts and geochemical processes) and (2) evaluate the indirect emissions of GHGs from groundwater at a regional scale in Wallonia (Belgium). To this end, nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) concentrations and the stable isotopes of nitrate (NO3-) and sulphate were monitored in 12 aquifers of the Walloon Region (Belgium). The concentrations of GHGs range from 0.05µg/L to 1631.2µg/L for N2O, 0µg/L to 17.1µg/L for CH4, and 1769 to 100,514ppm for the partial pressure of CO2 (pCO2). The highest average concentrations of N2O and pCO2 are found in a chalky aquifer. The coupled use of statistical techniques and stable isotopes is a useful approach to identify the geochemical conditions that control the occurrence of GHGs in the aquifers of the Walloon Region. The accumulation of N2O is most likely due to nitrification (high concentrations of dissolved oxygen and NO3- and null concentrations of ammonium) and, to a lesser extent, initial denitrification in a few sampling locations (medium concentrations of dissolved oxygen and NO3-). The oxic character found in groundwater is not prone to the accumulation of CH4 in Walloon aquifers. Nevertheless, groundwater is oversaturated with GHGs with respect to atmospheric equilibrium (especially for N2O and pCO2); the fluxes of N2O (0.32kgN2O-NHa-1y-1) and CO2 (27kgCO2Ha-1y-1) from groundwater are much lower than the direct emissions of N2O from agricultural soils and fossil-fuel-related CO2 emissions. Thus, indirect GHG emissions from the aquifers of the Walloon Region are likely to be a minor contributor to atmospheric GHG emissions, but their quantification would help to better constrain the nitrogen and carbon budgets.

12.
Sci Total Environ ; 622-623: 362-372, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29216471

RESUMO

The influence of abiotic and biotic variables on the concentration of dimethyl sulfide (DMS), dimethylsulfoniopropionate (DMSP), and dimethylsulfoxide (DMSO), were investigated during an annual cycle in 2016 in the Belgian Coastal Zone (BCZ, North Sea). We reported strong seasonal variations in the concentration of these compounds linked to the phytoplankton succession with high DMS(P,O) producers (mainly Phaeocystis globosa) occurring in spring and low DMS(P,O) producers (various diatoms species) occurring in early spring and autumn. Spatial gradients of DMS and DMSP were related to those of phytoplankton biomass itself related to the inputs of nutrients from the Scheldt estuary. However, the use of a relationship with Chlorophyll-a (Chl-a) concentration is not sufficient to predict DMSP. Accounting for the phytoplankton composition, two different DMSP versus Chl-a correlations could be established, one for diatoms and another one for Phaeocystis colonies. We also reported high nearshore DMSO concentrations uncoupled to Chl-a and DMSP concentrations but linked to high suspended particulate matter (SPM) presumably coming from the Scheldt estuary as indicated by the positive relationship between annual average SPM and salinity.


Assuntos
Dimetil Sulfóxido/análise , Fitoplâncton , Água do Mar/análise , Compostos de Sulfônio/análise , Bélgica , Clorofila , Clorofila A , Diatomáceas , Estuários , Haptófitas , Mar do Norte , Estações do Ano , Análise Espacial
13.
Sci Total Environ ; 621: 1415-1432, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29074237

RESUMO

This work reviews applications of stable isotope analysis to the studies of transport and transformation of N species in groundwater under agricultural areas. It summarizes evidence regarding factors affecting the isotopic composition of NO3-, NH4+ and N2O in subsurface, and discusses the use of 11B, 18O, 13C, 34S, 87Sr/86Sr isotopes to support the analysis of δ15N values. The isotopic composition of NO3-, NH4+ and N2O varies depending on their sources and dynamics of N cycle processes. The reported δ15N-NO3- values for sources of NO3- are: soil organic N - +3‰-+8‰, mineral fertilizers - -8‰-+7‰; manure/household waste - +5‰ to +35‰. For NH4+ sources, the isotopic signature ranges are: organic matter - +2.4-+4.1‰, rainwater - -13.4-+2.3‰, mineral fertilizers - -7.4-+5.1‰, household waste - +5-+9‰; animal manure - +8-+11‰. For N2O, isotopic composition depends on isotopic signatures of substrate pools and reaction rates. δ15N values of NO3- are influenced by fractionation effects occurring during denitrification (ɛ=5-40‰), nitrification (ɛ=5-35‰) and DNRA (ɛ not reported). The isotopic signature of NH4+ is also affected by nitrification and DNRA as well as mineralization (ɛ=1‰), sorption (ɛ=1-8‰), anammox (ɛ=4.3-7.4‰) and volatilization (ɛ=25‰). As for the N2O, production of N2O leads to its depletion in 15N, whereas consumption - to enrichment in 15N. The magnitude of fractionation effects occurring during the considered processes depends on temperature, pH, DO, C/NO3- ratio, size of the substrate pool, availability of electron donors, water content in subsoil, residence time, land use, hydrogeology. While previous studies have accumulated rich data on isotopic composition of NO3- in groundwater, evidence remains scarce in the cases of NH4+ and N2O. Further research is required to consider variability of δ15N-NH4+ and δ15N-N2O in groundwater across agricultural ecosystems.

14.
Microb Ecol ; 74(1): 33-53, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28138721

RESUMO

Travertine deposition is a landscape-forming process, usually building a series of calcareous barriers differentiating the river flow into a series of cascades and ponds. The process of carbonate precipitation is a complex relationship between biogenic and abiotic causative agents, involving adapted microbial assemblages but also requiring high levels of carbonate saturation, spontaneous degassing of carbon dioxide and slightly alkaline pH. We have analysed calcareous crusts and water chemistry from four sampling sites along the Hoyoux River and its Triffoy tributary (Belgium) in winter, spring, summer and autumn 2014. Different surface textures of travertine deposits correlated with particular microenvironments and were influenced by the local water flow. In all microenvironments, we have identified the cyanobacterium Phormidium incrustatum (Nägeli) Gomont as the organism primarily responsible for carbonate precipitation and travertine fabric by combining morphological analysis with molecular sequencing (16S rRNA gene and ITS, the Internal Transcribed Spacer fragments), targeting both field populations and cultures to exclude opportunistic microorganisms responding favourably to culture conditions. Several closely related cyanobacterial strains were cultured; however, only one proved identical with the sequences obtained from the field population by direct PCR. This strain was the dominant primary producer in the calcareous deposits under study and in similar streams in Europe. The dominance of one organism that had a demonstrated association with carbonate precipitation presented a valuable opportunity to study its function in construction, preservation and fossilisation potential of ambient temperature travertine deposits. These relationships were examined using scanning electron microscopy and Raman microspectroscopy.


Assuntos
Carbonatos/análise , Cianobactérias/metabolismo , Rios , Bélgica , Cianobactérias/genética , DNA Espaçador Ribossômico/genética , Europa (Continente) , RNA Ribossômico 16S/genética
15.
Sci Total Environ ; 584-585: 207-218, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28152458

RESUMO

This work reviews the concentrations, the dynamics and the emissions of nitrous oxide (N2O) in groundwater. N2O is an important greenhouse gas (GHG) and the primary stratospheric ozone depleting substance. The major anthropogenic source that contributes to N2O generation in aquifers is agriculture because the use of fertilizers has led to the widespread groundwater contamination by inorganic nitrogen (N) (mainly nitrate, NO3-). Once in the aquifer, this inorganic N is transported and affected by several geochemical processes that produce and consume N2O. An inventory of dissolved N2O concentrations is presented and the highest concentration is about 18.000 times higher than air-equilibrated water (up to 4004µg N L-1). The accumulation of N2O in groundwater is mainly due to denitrification and to lesser extent to nitrification. Their occurrence depend on the geochemical (e.g., NO3-, dissolved oxygen, ammonium and dissolved organic carbon) as well as hydrogeological parameters (e.g., groundwater table fluctuations and aquifer permeability). The coupled understanding of both parameters is necessary to gain insight on the dynamics and the emissions of N2O in groundwater. Overall, groundwater indirect N2O emissions seem to be a minor component of N2O emissions to the atmosphere. Further research might be devoted to evaluate the groundwater contribution to the indirect emissions of N2O because this will help to better constraint the N2O global budget and, consequently, the N budget.

16.
Chemosphere ; 168: 756-764, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27836279

RESUMO

We sampled the water column of the Dendre stone pit lake (Belgium) in spring, summer, autumn and winter. Depth profiles of several physico-chemical variables, nutrients, dissolved gases (CO2, CH4, N2O), sulfate, sulfide, iron and manganese concentrations and δ13C-CH4 were determined. We performed incubation experiments to quantify CH4 oxidation rates, with a focus on anaerobic CH4 oxidation (AOM), without and with an inhibitor of sulfate reduction (molybdate). The evolution of nitrate and sulfate concentrations during the incubations was monitored. The water column was anoxic below 20 m throughout the year, and was thermally stratified in summer and autumn. High partial pressure of CO2 and CH4 and high concentrations of ammonium and phosphate were observed in anoxic waters. Important nitrous oxide and nitrate concentration maxima were also observed (up to 440 nmol L-1 and 80 µmol L-1, respectively). Vertical profiles of δ13C-CH4 unambiguously showed the occurrence of AOM. Important AOM rates (up to 14 µmol L-1 d-1) were observed and often co-occurred with nitrate consumption peaks, suggesting the occurrence of AOM coupled with nitrate reduction. AOM coupled with sulfate reduction also occurred, since AOM rates tended to be lower when molybdate was added. CH4 oxidation was mostly aerobic (∼80% of total oxidation) in spring and winter, and almost exclusively anaerobic in summer and autumn. Despite important CH4 oxidation rates, the estimated CH4 fluxes from the water surface to the atmosphere were high (mean of 732 µmol m-2 d-1 in spring, summer and autumn, and up to 12,482 µmol m-2 d-1 in winter).


Assuntos
Lagos/química , Metano/química , Nitratos/química , Sulfatos/química , Compostos de Amônio/análise , Anaerobiose , Atmosfera , Bélgica , Dióxido de Carbono/análise , Ferro/análise , Manganês/análise , Metano/análise , Nitratos/análise , Óxido Nitroso/análise , Oxirredução , Fosfatos/análise , Estações do Ano , Sulfatos/análise , Sulfetos/análise
17.
Sci Rep ; 6: 27908, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27283125

RESUMO

Methane is the second most important greenhouse gas contributing to climate warming. The open ocean is a minor source of methane to the atmosphere. We report intense methane emissions from the near-shore southern region of the North Sea characterized by the presence of extensive areas with gassy sediments. The average flux intensities (~130 µmol m(-2) d(-1)) are one order of magnitude higher than values characteristic of continental shelves (~30 µmol m(-2) d(-1)) and three orders of magnitude higher than values characteristic of the open ocean (~0.4 µmol m(-2) d(-1)). The high methane concentrations (up to 1,128 nmol L(-1)) that sustain these fluxes are related to the shallow and well-mixed water column that allows an efficient transfer of methane from the seafloor to surface waters. This differs from deeper and stratified seep areas where there is a large decrease of methane between bottom and surface by microbial oxidation or physical transport. Shallow well-mixed continental shelves represent about 33% of the total continental shelf area, so that marine coastal methane emissions are probably under-estimated. Near-shore and shallow seep areas are hot spots of methane emission, and our data also suggest that emissions could increase in response to warming of surface waters.

18.
Sci Rep ; 5: 15614, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26494107

RESUMO

Carbon emissions to the atmosphere from inland waters are globally significant and mainly occur at tropical latitudes. However, processes controlling the intensity of CO2 and CH4 emissions from tropical inland waters remain poorly understood. Here, we report a data-set of concurrent measurements of the partial pressure of CO2 (pCO2) and dissolved CH4 concentrations in the Amazon (n = 136) and the Congo (n = 280) Rivers. The pCO2 values in the Amazon mainstem were significantly higher than in the Congo, contrasting with CH4 concentrations that were higher in the Congo than in the Amazon. Large-scale patterns in pCO2 across different lowland tropical basins can be apprehended with a relatively simple statistical model related to the extent of wetlands within the basin, showing that, in addition to non-flooded vegetation, wetlands also contribute to CO2 in river channels. On the other hand, dynamics of dissolved CH4 in river channels are less straightforward to predict, and are related to the way hydrology modulates the connectivity between wetlands and river channels.

19.
Sci Rep ; 5: 13803, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26348272

RESUMO

Iron-rich (ferruginous) ocean chemistry prevailed throughout most of Earth's early history. Before the evolution and proliferation of oxygenic photosynthesis, biological production in the ferruginous oceans was likely driven by photoferrotrophic bacteria that oxidize ferrous iron {Fe(II)} to harness energy from sunlight, and fix inorganic carbon into biomass. Photoferrotrophs may thus have fuelled Earth's early biosphere providing energy to drive microbial growth and evolution over billions of years. Yet, photoferrotrophic activity has remained largely elusive on the modern Earth, leaving models for early biological production untested and imperative ecological context for the evolution of life missing. Here, we show that an active community of pelagic photoferrotrophs comprises up to 30% of the total microbial community in illuminated ferruginous waters of Kabuno Bay (KB), East Africa (DR Congo). These photoferrotrophs produce oxidized iron {Fe(III)} and biomass, and support a diverse pelagic microbial community including heterotrophic Fe(III)-reducers, sulfate reducers, fermenters and methanogens. At modest light levels, rates of photoferrotrophy in KB exceed those predicted for early Earth primary production, and are sufficient to generate Earth's largest sedimentary iron ore deposits. Fe cycling, however, is efficient, and complex microbial community interactions likely regulate Fe(III) and organic matter export from the photic zone.


Assuntos
Planeta Terra , Compostos Férricos , Ferro , Água/química , Biodiversidade , Congo , Microbiologia Ambiental , Ferro/química , Ruanda
20.
Microb Ecol ; 70(3): 596-611, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25912922

RESUMO

The microbial community composition in meromictic Lake Kivu, with one of the largest CH4 reservoirs, was studied using 16S rDNA and ribosomal RNA (rRNA) pyrosequencing during the dry and rainy seasons. Highly abundant taxa were shared in a high percentage between bulk (DNA-based) and active (RNA-based) bacterial communities, whereas a high proportion of rare species was detected only in either an active or bulk community, indicating the existence of a potentially active rare biosphere and the possible underestimation of diversity detected when using only one nucleic acid pool. Most taxa identified as generalists were abundant, and those identified as specialists were more likely to be rare in the bulk community. The overall number of environmental parameters that could explain the variation was higher for abundant taxa in comparison to rare taxa. Clustering analysis based on operational taxonomic units (OTUs at 0.03 cutoff) level revealed significant and systematic microbial community composition shifts with depth. In the oxic zone, Actinobacteria were found highly dominant in the bulk community but not in the metabolically active community. In the oxic-anoxic transition zone, highly abundant potentially active Nitrospira and Methylococcales were observed. The co-occurrence of potentially active sulfur-oxidizing and sulfate-reducing bacteria in the anoxic zone may suggest the presence of an active yet cryptic sulfur cycle.


Assuntos
Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos , Lagos/microbiologia , Microbiota , Archaea/genética , Proteínas Arqueais/genética , Bactérias/genética , Proteínas de Bactérias/genética , República Democrática do Congo , Filogenia , RNA Arqueal , RNA Bacteriano , Reação em Cadeia da Polimerase em Tempo Real , Ruanda , Estações do Ano , Análise de Sequência de DNA , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA